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ABSTRACT: This paper considers the problem of
estimation and identification with bounded uncertainties
in the data and system matrices. In particular, we will
examine how to solve the Ax ≈ b when we have bounds
on the errors of column blocks of A in the min max sense.
Error bounds on column blocks of the system matrix A are
caused by numerous situations, such as different sensor or
parameter uncertainties, filter order updating, and image
separation. Performance of the method is compared with
existing techniques.
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1. Introduction

Estimation and identification are important areas of al-
most every problem in science and engineering. A typical
way of stating an estimation or identification problem is
that there is a system, described by a matrix, A, with
inputs, x, and outputs, b. The inputs and outputs could
either be matrices or vectors. The equation which de-
scribes this is thus Ax = b. The outputs of the system
are considered measurable, and from them and the ma-
trix A, it is desired to find the unknown inputs, x. In
real systems the equality rarely holds because b is never
measured perfectly, modeling and identification do not
produce an exact A, and the basic equation Ax = b is a
linear approximation. The fundamental problem consid-
ered is thus Ax ≈ b, where both A and b are assumed to
have errors associated with them. In particular, let the
”true” system, Atrue, be related to the nominal model,
A, by an error matrix EA. Similarly let the true outputs,
btrue be related to the measured outputs, b, by Eb. Since
the true system is not a mathematical model, the result-
ing equation is still approximate, (A + EA)x ≈ (b + Eb),
but is the best approximation possible. The goal is to
find the best x, in the resulting minimization problem,
minx ‖(A+EA)x− (b+Eb)‖. The min max problem was
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proposed and solved in [1] by secular equation techniques
and in [5] by Linear Matrix Inequality techniques. This
paper will concentrate on the secular equation formula-
tion.

This paper considers the case where bounds are
known on groups of columns of EA, which are referred to
as block columns. This can arise if a new block column is
added to A corresponding to an increase in the order of
the filter. The new block column will not necessarily have
the same uncertainty as the original block, thus partition-
ing is needed so different errors may be assigned to each
block. Alternately, the column partitioning case could
be used to model a series of geophones in a seismology
problem that have different uncertainties due to geome-
try or surface geology conditions. Column partitioning
also describes signal separation with different uncertain-
ties associated with each signal. The column partitioning
case also could be dealing with various polynomials in
a polynomial fitting problem. In short, many problems
satisfy the basic conditions of the multi-column problem.
A simplified case of this, where one of the columns was
unperturbed is considered in [1].

2. Min Max

The min max problem is to find the worst model of a
system in a bounded region, and then solve the system
based on this worst case scenario. Mathematically it is
written as

min
x

max
‖EA‖ 6 η
‖Eb‖ 6 ηb

‖(A + EA)x− (b + Eb)‖. (1)

This problem can be shown to be equivalent to solving
a problem with similar form to the Tikhonov problem,
see [1]. Equation 1 can be interpreted geometrically by
Figure 1.

The maximization forms the hyperspheres around Ax
and b. The cone around A is formed by varying the size
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Figure 1: Geometric Interpretation of Min Max Solution

of x. The solution, x, and the residual, R, are found
by connecting the furthest points on the hyperspheres.
The maximization restricts the problem to the lower line
of the cone. The minimization selects the point on the
lower cone such that the line segment from the furthest
point on the hypersphere around b to the lower cone is
perpendicular to the lower cone. The norm used in [1] is
the 2-norm, though [13] extends it to other norms. The
min max problem becomes

min
x

(‖Ax− b‖+ η‖x‖+ ηb), (2)

which differs from the typical Tikhonov problem in that
the norms are not squared. As opposed to the Tikhonov
problem, the term η now has a physical intuition also,
that being the amount of uncertainty in the matrix. Com-
puting the min max solution takes longer than computing
the solution to a Tikhonov problem if a simple choice of
regression parameter is chosen for the Tikhonov problem,
so it is logical to ask why one would want to spend the
extra operations to do so. The simple answer is that the
two problems can give arbitrary differences, which we will
examine in Section 3.

In the form of Equation 2 it is easy to see that the
problem is continuous and convex but non-smooth, since
it is non-differentiable whenever x = 0 or when Ax =
b. The solution to Equation 2 and thus Equation 1, is
summarized in Table 1. For Table 1, let the SVD of A be
given by

A =
[
U1U2

] [
Σ
0

]
V T .

Partition the vector UT b into

[
U1U2

]T
b =

[
b1

b2

]
,

and introduce the secular equation

g(ψ) = bT
1 (Σ2 − η2I)(Σ2 + ψI)−2b1 − η2

ψ2
‖b2‖2,

which has a unique positive root, denoted ψ̄ under the
conditions noted in Table 1. Define the weighted pseudo-
inverse by

A†w = (AT A + ψ̄I)−1AT .

Finally define

τ1 =
‖Σ−1b1‖
‖Σ−2b1‖ and τ2 =

‖AT b‖
‖b‖ .

The solution is thus given below. Notice that the least

b ∈ R(A) b 6∈ R(A)

η > τ2 0 0

τ1 < η < τ2 x = A†wb x = A†wb

η 6 τ1 x = A†b x = A†wb

η = τ1 = τ2 x = βA†b x = A†wb
with 0 6 β 6 1

Table 1: Min Max Solution

squares solution, A†b, is the min max solution under spe-
cial conditions. In one case a scaled family of the least
squares solution solves the problem. In general though
the solution is given by finding the unique root of the
secular equation, g(ψ) in the positive quadrant. When η
is large the solution is zero.

3. Comparison to Tikhonov

The min max solution has a similar form to the Tikhonov
solution and computing the min max solution takes longer
than computing the solution to a Tikhonov problem if a
simple choice of regression parameter is chosen for the
Tikhonov problem. At this point, it is reasonable to ask
if there is a similar, but simpler way to solve the problem,
which exhibits the desired behavior of min max that can
be solved instead of the min max methodology of [1, 13, 5].
Tikhonov regulation has a large body of literature, such
as [6, 9], and a closed form solution.

A reasonable choice for the parameter λ in the
Tikhonov problem is to chose it to be equal to the square
of the uncertainty, since all the other terms are squared
and this will account for the size of the uncertainty. In



this case the model has a closed form solution which is
given by

x̂ =
(
AT A + η2I

)−1
AT b. (3)

Note that for the min max problem that if Ax 6= b and
x 6= 0 then the min max problem also has a solution with
a similar form given by

x̂ =
(
AT A + αI

)−1
AT b (4)

α = η
‖Ax− b‖
‖x‖ . (5)

If the Tikhonov problem’s parameter can be arbitrarily
larger, then the solution can be over regularized and thus
valuable information can be lost. If the Tikhonov para-
meter can be arbitrarily smaller, then the solution can
be under regularized and thus the solution might not be
robust. To compare the two, examine the ratio of the
regularization parameters

α

η2
=

‖Axmm − b‖
η ‖xmm‖ . (6)

3.1. Over-Regularization

First, see if the Tikhonov problem can be over regularized,
which is the more dangerous problem. This corresponds
to the ratio being arbitrarily small. Note that ‖Axmm −
b‖ 6 ‖b‖ at the solution, by noting the cost at the solution
must be less than the cost at the point x = 0. Thus,

α

η2
6 ‖b‖

η ‖xmm‖ . (7)

It is clearly possible to pick A and b such that η‖xmm‖ À
‖b‖. For example consider the following simple system,

A =
[
δ
0

]
b =

[
1
δ
δ

]
η =

δ

2
(8)

with δ ¿ 1. For this system note that the least squares
(LS) solution is given by xLS = 1

δ2 , and the min max
system is xmm = 1

δ2 − 1
δ
√

3
. Note that since δ ¿ 1, the

min max estimate is extremely close to the LS solution.
The Tikhonov problem solution is given by xT = 4

5δ2 ,
which is easily seen to be arbitrarily far from the desired
solution, since for δ ¿ 1 the two candidate solutions differ
by almost 20% of an arbitrarily large number. Moreover,
the ratio of regularization parameters is approximately
given by the arbitrarily small number,

α

η2
≈ 4√

3
δ2. (9)

3.2. Under-Regularization

The second area to be considered is if the Tikhonov prob-
lem can be under-regularized. This corresponds to the
ratio of α over η2 being arbitrarily large. Note that
‖Axmm − b‖ > ‖PA⊥b‖, thus

α

η2
> ‖PA⊥b‖

η ‖xmm‖ . (10)

It is clearly possible to pick A and b such that ‖xmm‖ ¿
‖PA⊥b‖. For example consider the following simple sys-
tem,

A =
[
1
0

]
b =

[
1
1

]
η = 1. (11)

Note that since the perturbation is as large as the norm
of the A matrix, xmm = 0, which corresponds to α →∞.
This is intuitively pleasing, as it confirms the belief that
no valid information exists for a system with uncertainty
as large as the system. Note also that xLS = 1. Now the
Tikhonov problem has the solution xT = 1

2 . Not only is
this clearly too optimistic an answer, the ratio is infinite
and thus arbitrarily large, as was desired to be shown.
Thus while the Tikhonov problem has nice properties for
calculation, its estimator can be arbitrarily different than
the min max problem. Additionally, the Tikhonov prob-
lem does not correspond to physical intuition as can be
seen in the last example above. The min max problem
can thus not be altered to an apparently similar problem
and solved for that system.

4. The Partitioned Problem

After having shown the uniqueness of the general form of
the min max problem, we will examine the column parti-
tioned case. Consider the partitioned min max problem,

min
x

max
‖Ei‖2 6 ηi,
‖Eb‖2 6 ηb

∥∥∥∥∥
p∑

i=1

(Ai + Ei)xi − (b + Eb)

∥∥∥∥∥ ,

where Ai, Ei ∈ Rm×ni , xi ∈ Rni , and n =
∑p

i=1 (ni).
Note that given the bounds on the maximization

∥∥∥∥∥
p∑

i=1

(Ai + Ei)xi − (b + Eb)

∥∥∥∥∥

6 ‖Ax− b‖+
p∑

i=1

ηi ‖xi‖+ ηb.



By considering the following perturbations,

Eo
i =

ηi(Ax− b)xT
i

‖Ax− b‖ ‖xi‖
Eo

b =
−ηb(Ax− b)
‖Ax− b‖

it can be shown that these perturbations achieve the up-
per bound and thus the cost function can be simplified
to

J = min
x

(
‖Ax− b‖+

p∑

i=1

ηi ‖xi‖+ ηb

)
. (12)

The cost function is clearly convex, as it is the sum of
convex functions, so a solution must exist but does not
have to be unique.

5. Quadratically Convergent Method

The cost function is not only convex, but it is also a sum
of Euclidean norms. A large body of literature exists
for solving the sum of Euclidean norms problem. The
problem dates back to Fermat, who posed a special case
of it. Various methods have been proposed which range
from a sequence of linear least squares problems [7, 3, 12],
successive over-relaxation [11], hyperbolic approximation
procedure [4], subgradients [8, 2]. All of these have, at
best, linear convergence, however there is a quadratically
convergent method proposed by Michael Overton in [10].

A quadratically convergent method with good prop-
erties exists, so why look further? The major reason is
that method operates on the size of the original problem
(m), while a secular equation solution will operate on a
smaller problem (p, with p ¿ m usually).

6. Column Dependence

Given the similarity of the problem structure to the non-
partitioned case, some have concluded that the solution
conditions should be the same. In particular, the non-
partitioned problem has two simple conditions on x that
do not carry into the partitioned case,

1. the solution, x, is non-zero if and only if ‖AT b‖ >
η‖b‖,

2. the solution, x, has a smaller norm than the least
squares solution.

6.1. When x Is Zero

First consider the simple relation that the solution x is
non-zero if and only if ‖AT b‖ > η‖b‖. This is not true
for the partitioned case, which can be seen by considering
the following

A1 =




1
1
0


 A2 =




0
1
0


 b =




1
0
1


 .

It is readily apparent that AT
2 b = 0 and thus from the

original problem, x2 = 0 for all η2. Now consider η1 =
η2 = 1

4 , and consider the cost, J , for x2 = 0 and x1 6= 0.

J(x1, x2 = 0) =
√

2(x2
1 − x1 + 1) +

|x1|
4

The minimum can be found by taking the derivative of
J(x1, x2 = 0) and setting it equal to zero, thus the mini-
mum cost for x2 = 0 is

J

(
1
2
−

√
3

124
, 0

)
= (3.875)

√
3
31

+
1
8

≈ 1.330.

Now consider the case when x2 6= 0. Note that when
x2 6= 0, it must be that x1 6= 0 because if not, it is easily
verified that J(x1 = 0, x2 6= 0) > J(x1 = 0, x2 = 0). To
start, the expression for the cost is given by

J(x1, x2 6= 0) =
|x1|+ |x2|

4
+

√
(1− x1)2 + (x1 + x2)2 + 1.

By examining the cost it can be concluded that the op-
timal 0 < x1 < 1 and optimal −x1 < x2 < 0. These
relations can be used to simplify the derivatives about to
be taken. Since both x1 and x2 are not zero, we take the
derivative of the cost with respect to each variable in turn
and set the result equal to zero and do some algebra to
obtain

J

(
1− 2√

11
,

3√
11
− 1

)
=

√
11
4

+
1
2

≈ 1.329.

Thus, the cost for x2 6= 0 is less than the cost for x2 =
0, so while in the original problem it would have been
predicted that x2 = 0 this is not the case.

6.2. Size of ‖x‖

The second relation to consider is that the size of the
multi-column partitioned min max solution, xΨ, should



be smaller than the least squares solution, xLS , since both
have the same numerator and the denominator of xΨ is
larger. This is not always the case. To demonstrate this,
consider a simple problem.

Let A and b be the matrices defined below with each
column of A a separate partition.

A =




1 0 0.1
1 −1 1
0 0 0.1
0 0 0


 b =




1
0
0
10




The least squares solution is given by

xLS =
[
1 1 0

]T
.

Now consider the case when η1 = 2,η2 = 0, and η3 = 0.
The solution, xΨ is given by

xΨ =
[
0 5 5

]T
.

It is trivial to see that ‖xLS‖ < ‖xΨ‖, and thus the idea is
disproved. The question remains then as to what can be
said about the size of xΨ and thus where it lies. The fol-
lowing lemma is not tight in its bound but it does provide
a good starting point for the analysis.

Lemma 1 For a matrix A, a vector b, and scalars ηi,
the solution to the multiple column partitioned min max
problem, xΨ satisfies

‖xΨ‖ 6 κ2‖xLS‖.

where κ is the condition number of A.

Proof:

‖xΨ‖ = ‖(AT A + Ψ)−1AT b‖
= ‖(AT A + Ψ)−1‖‖AT A‖‖(AT A)−1AT b‖
6 1

σmin(AT A + Ψ)
σ2

1‖xLS‖

6 σ2
1

σ2
n

‖xLS‖

6 κ2‖xLS‖

Other such bounds exist and can be used to tighten the
starting condition. A key point of developing this lemma
is that bounds exist on the size of the estimate, and can
be calculated a priori. Such bounds could be used to start
methods like the ellipsoidal algorithm.

7. Form of Solution for Multiple Columns

The solution could be at either a differentiable point or
a non-differentiable point. The non-differentiable points
are located at ‖xi‖ 6= 0 ∀i ∈ {1, · · · , p} and ‖Ax− b‖ 6=
0. This section will consider the case when the solution
is at a differentiable point. A necessary condition for a
minimum at a differentiable point is obtained by taking
the gradient and setting it equal to zero, which yields

AT b =
(
AT A + Ψ

)
x̂

with

Ψ =




ψ1I 0
. . .

0 ψpI




ψi =
ηi ‖Ax̂− b‖

‖x̂i‖ > 0.

Note that AT A is positive semi-definite and Ψ is positive
definite, so that the matrix multiplying x̂ is invertible.
Since,

(
AT A + Ψ

)
is invertible, x̂ can be solved for,

x̂ =
(
AT A + Ψ

)−1
AT b

8. General Column Form Secular Equation

The secular equations for this problem are now developed.
First, square the definition of ψi.

ψ2
i ‖x̂i‖2 = η2

i ‖Ax̂− b‖2

Then using the expressions derived for x̂i and Ax̂ − b,
define the secular equations, Gi (∀i ∈ 1, . . . , p), to be

Gi(ψ) = bT FNiFb (13)

with

F =
(
I + AΨ−1AT

)−1

Ni =
(
AiA

T
i − η2

i I
)
.

Note that the definition of F is positive definite for all
positive values of ψi. Note also that the secular equations
(Gi(ψ),i = 1, 2, · · · , p) have no singularities in the first
quadrant and since the equations are rational expressions
of ψi the functions are C1 in the first quadrant. All that
remains is to show the existence and uniqueness of the
solution.



8.1. Uniqueness

To prove uniqueness, it will be shown that the cost func-
tion is strictly convex and thus any solution to the original
problem is unique. Since the secular equations only have
a root when the original problem has a solution, this will
show that any solution to the secular equation is unique.
To show the original problem is strictly convex in the re-
gion of interest for the problem, consider the Hessian of
the cost, H,

H =
AT P⊥Ax−bA + Ψdiag(P⊥xi

)
‖Ax− b‖ ,

where P is a projection matrix and its subscript specifies
the space it projects onto. In order for the Hessian to
be positive semi-definite there must be a column of A,
say Aik

, that is in the ith partition and a corresponding
element of x called xik

for which both

1. P⊥Ax−bAik
= 0,

2. ψie
T
ik

P⊥xi
eik

= 0,

where eik
is a vector that is zero everywhere except the

component in the ithk position, which is 1. In order for
item 1 to hold, Aik

must be in the direction of the resid-
ual, which means that b ∈ R(A). By assuming the stan-
dard condition that b /∈ R(A), the first term is positive
and thus the Hessian is positive definite. Even if b ∈ R(A)
this only corresponds to the least squares case.

The only thing left is to observe that the problem
is strictly convex and does not have any place it is unde-
fined, thus there is always a solution. It can be shown that

if ηi 6 ‖AT
i b‖
‖b‖ the solution was at the extremum. The so-

lution is thus characterized. Any multi-dimensional root
finder can be used to calculate the actual location of the
roots of Gi.

9. A Numerical Example

The following problem is based on an example of Dr. Ali
Sayed in an unpublished paper entitled “Estimation in the
Presence of Multiple Sources of Uncertainties with Appli-
cations”. Assume that there are two different signals that
need to be estimated from a series of three simultaneous
observations. The relation between the signals and the
observations are known approximately and are the A ma-
trix. Additionally, assume the first signal is stronger and
that the errors associated with the first signal are smaller.

First consider the case of singular A. In Figure 2(a),
least squares can only estimate the stronger signal, but

does a reasonable job at it. The multi-column solution
does quite well for the first signal, and gets basic features
and is a reasonable scale for the second. Note that as is
typical for a pessimistic problem, the multi-column min
max tends to underestimate the size of the signal, but this
underestimation is better than the alternatives. Total
least squares is shown in Figure 2(b) because it is not
even close, notice the order of magnitude is off by around
14.

Now consider the case of a near singular A. This
is shown in Figure 2(c). Least squares and total least
squares are almost identical for this problem, and off by a
factor of two to seven. The multi-column solution is very
good for first signal and reasonable for the second. Note
the multi-column min max does not change significantly
between the two cases. This is a result of the robustness
of the solution. A solution for the min max problem works
for nearby problems, so it tends not to change for small
alterations in the problem, even when the change tends
to cause a major change in other methods.

10. Summary

The multiple column min max problem has been posed
and solved. Several techniques for solution are presented
but the best technique is to use the secular equation be-
cause it is usually a much smaller problem. Overton’s
quadratically convergent method for the sum of Euclid-
ean norms could be used, and can be faster if m ≈ p
and the problem is ill-conditioned. Overton’s method can
converge faster when the problem is ill-conditioned, but
note that for m ≈ p the problem must be at least nearly
square with the partitions being individual columns of A.
The conditions for the secular equation to work better
are much more likely and thus are the advised solution
technique.

The multiple column min max problem should be
used instead of the regular min max problem if there
is a significant difference in the bounds on some block
columns. If the bounds are similar there is not a signifi-
cant difference, but there is a processing cost difference.
The usual case when the min max formulation has signif-
icant advantages over the least squares and total least
squares is when the model has conditioning problems.
Without conditioning problems the standard techniques
give answers, which are reasonably close to the min max,
and sometimes give better answers if the error bounds
are over-estimated. When the conditioning problems ex-
ist, however the min max solution can maintain a reason-
ably good solution into areas where the other techniques
are not capable. In cases where matrix structure is the
key goal, and robustness is desired, the LMI techniques
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Figure 2: Matrix Signal Separation Problem

should be used.
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