

A MULTIPROCESSOR PARALLEL APPROACH TO BIT-PARALLEL

APPROXIMATE STRING MATCHING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Elias Anwar Chibli

March 2008

A MULTIPROCESSOR PARALLEL APPROACH TO BIT-PARALLEL

APPROXIMATE STRING MATCHING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Elias Anwar Chibli

March 2008

Approved by:

Keith Evan Schubert, Advisor, Computer
Science

Date

Ernesto Gomez

Yasha Karant

c© 2008 Elias Anwar Chibli

ABSTRACT

Efficient approximate string matching algorithms are an essential part of the

growing field of Bioinformatics. The search to uncover the meaning of DNA

sequences has quickly increased in the past few decades. The demand for low

latency string matching systems is a must as the size of data sets involved is

ever increasing. A parallel architecture of these search mechanisms provides

an efficient method for minimizing latency. The technique proposed applies

two methods of parallelization; a bit-parallel approach and also the use

of multiple processors in parallel via a cluster of workstations using MPI.

Empirical results show that applying a parallel design to string matching

algorithms is a viable solution. For a system of between two and eight

heterogeneous workstations, the results produce nearly ideal speedup for

most practical cases.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Schubert who has helped me a great deal in

this process and has been a mentor throughout my computer science education. He

has inspired me with his attitude and thirst for knowledge and truth of all things.

His advice was crucial in enabling me to pursue this path. He helped me believe that

this was a goal I could achieve.

I also want to thank Dr. Karant and Dr. Gomez for providing their knowledge,

advice and technical support during this project. I also want to extend my thanks

to all professors in the computer science department at CSUSB. Each one of you has

helped me in many ways to better understand this field. It was truly a pleasure being

around you both in and out of the classroom.

I wish to give my sincere thanks to my family. I am grateful for my wife, son

and daughter who have always supported me through it all in the many years it has

taken me to complete this goal. I love you all and I am so proud of you. I also want

to thank my mom and dad who are my heroes. You are both truly special human

beings with a beautiful spirit. I would not be the person I am today without your

continued guidance. I also want to thank my brother who has inspired me with his

own achievements and way of life. Your moral support and understanding is priceless.

I am grateful just to have you all in my life.

iv

DEDICATION

To Allison, Elias and Aliyah.

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1 String Matching Background . 1

1.1.1 In The Beginning . 2

1.1.2 Levenshtein Distance . 3

1.1.3 Improving Time Complexity 8

1.1.4 The Bit-Parallel Approach . 9

1.2 Bioinformatics . 11

1.2.1 DNA . 11

1.2.2 DNA-RNA Connections . 13

1.2.3 Genetic Codes . 15

1.2.4 Coding Errors . 18

1.2.5 Mutations . 20

1.3 String Matching In Bioinformatics . 22

1.3.1 Restriction Mapping . 23

1.3.2 Motif Finding . 24

vi

1.3.3 Longest Common Subsequence 27

2. Myers’ Bit-Parallel Algorithm . 30

2.1 The Design . 31

2.2 Developing the Basic Algorithm . 35

2.2.1 Assumptions . 35

2.2.2 Representation . 35

2.2.3 Cell Structure . 36

2.2.4 Cell Logic . 37

2.2.5 Preprocessing the Alphabet 38

2.2.6 The Scanning Step . 40

2.2.7 Computing the X-Values . 42

2.2.8 The Complete Algorithm . 46

2.3 General Target Length Extension . 47

3. Multiprocessor Parallelism . 50

3.1 Distributing the Problem . 50

3.2 The Implementation . 54

3.3 Empirical Results . 56

4. Conclusion . 72

Appendix A: SOURCE CODE . 73

References . 90

vii

LIST OF TABLES

1.1 Levenshtein Distance (Θ(nm) Space)- C++ Code Sample 5

1.2 Levenshtein Distance (Θ(2m) Space) - C++ Code Sample 7

1.3 Codon Codes for Amino Acids . 17

1.4 Human Chromosomes . 19

2.1 The Basic Bit-Parallel Algorithm in Pseudocode 46

3.1 Result Data for n=1MB, m=16, k=0, p=[1-7] 61

3.2 Result Data for n=10MB, m=16, k=0, p=[1-7] 62

3.3 Result Data for n=25MB, m=16, k=0, p=[1-7] 63

3.4 Result Data for n=50MB, m=16, k=0, p=[1-7] 64

3.5 Result Data for n=100MB, m=16, k=0, p=[1-7] 65

3.6 Result Data for n=25MB, m=16, k=2, p=[1-7] 66

3.7 Result Data for n=25MB, m=16, k=4, p=[1-7] 67

3.8 Result Data for n=25MB, m=16, k=8, p=[1-7] 68

3.9 Result Data for n=25MB, m=16, k=12, p=[1-7] 69

3.10 Result Data for n=25MB, m=64, k=0, p=[1-7] 70

3.11 Result Data for n=25MB, m=1K, k=0, p=[1-7] 71

viii

LIST OF FIGURES

1.1 Hamming Distance Example . 2

1.2 Levenshtein Distance - Resulting Matrix 4

1.3 DNA Base Pairing . 13

1.4 DNA Structure . 14

1.5 Example of Levenshtein Distance Algorithm for Finding the Location

of a Restriction Site . 25

1.6 Example of Computing the Longest Common Subsequence Between

Two Strings . 29

2.1 Illustration of a Bit-Parallel Dynamic Programming Matrix 34

2.2 Bit-Vector Cell Structure and Input/Output Function 37

2.3 Bit-Parallel Scanning Stages . 39

2.4 Computing Xv . 43

2.5 The Addition Automaton . 45

2.6 Block-Based Dynamic Programming 48

3.1 Illustration of Multiprocessor Left Boundary Problem 52

3.2 Overlapping m− 1 Characters on the Left Boundary 55

3.3 Result Graphs for n=1MB, m=16, k=0, p=[1-7] 61

3.4 Result Graphs for n=10MB, m=16, k=0, p=[1-7] 62

3.5 Result Graphs for n=25MB, m=16, k=0, p=[1-7] 63

3.6 Result Graphs for n=50MB, m=16, k=0, p=[1-7] 64

ix

3.7 Result Graphs for n=100MB, m=16, k=0, p=[1-7] 65

3.8 Result Graphs for n=25MB, m=16, k=2, p=[1-7] 66

3.9 Result Graphs for n=25MB, m=16, k=4, p=[1-7] 67

3.10 Result Graphs for n=25MB, m=16, k=8, p=[1-7] 68

3.11 Result Graphs for n=25MB, m=16, k=12, p=[1-7] 69

3.12 Result Graphs for n=25MB, m=64, k=0, p=[1-7] 70

3.13 Result Graphs for n=25MB, m=1K, k=0, p=[1-7] 71

x

1. INTRODUCTION

This thesis aims to present with empirical results that a parallel design with the

use of multiple processors can be successfully applied along with bit-parallel approx-

imate string matching algorithms to solve practical Bioinformatics problems. It will

demonstrate that nearly optimal speedup can be achieved with a cluster of between

two and eight workstations using MPI(Message Passing Interface), directly decreasing

the total latency required to perform a string matching problem. This introductory

chapter examines the background of string matching algorithms in Section 1.1. An

overview of the field of Bioinformatics is explained in Section 1.2. Finally, section 1.3

introduces some practical Bioinformatics problems and how they can be solved using

string matching solutions.

1.1 String Matching Background

The problem of matching strings is one that is deeply rooted in the field of computer

science. It has been studied to a great extent since the early beginnings of modern

digital computation. In its essence, the problem of matching strings is one that is very

general. It is the problem of verifying how similar or different two sets of data are

from one another. The metric used to measure the result of the comparison can vary

according to the given application. There is a vast variety of applications that make

1

Fig. 1.1: Hamming Distance Example

use of string matching; such as database searching, spell checkers in word processors,

web searching, anti-virus software, document comparison tools, DNA sequencing,

and many more. These and many other common computing tools need accurate and

efficient string matching algorithms in order to operate. This makes string searching

an significant and fundamental problem in computer science.

1.1.1 In The Beginning

There have been several algorithms proposed for solving string matching problems.

In 1950, Richard W. Hamming published an article describing a method for detecting

and correcting error codes[6]. Better known as the “Hamming distance”, it is one of

the earliest successful methods for computing the difference between two strings. This

work is still used today in a variety of applications that span from telecommunications

to cryptography. The Hamming distance was also used as a base for much of the

subsequent research in string matching. Formally, the Hamming distance is defined

as the number of positions containing differing characters in two aligned strings of

equal size. This means that for binary strings α and β in the alphabet Σ = {0, 1},

the Hamming distance is the number of 1’s of α xor β. Figure 1.1 illustrates an

example of computing the Hamming distance. This approach to string matching is

2

fast, efficient and sufficient for many applications, but has many restrictions. The

two strings being compared are assumed to be perfectly aligned and therefore must

be the same size. The resulting metric only tells us the amount of differing characters

that exist between the two strings.

1.1.2 Levenshtein Distance

A more advanced technique for string matching was proposed by Vladimir I. Lev-

enshtein in 1966[12]. He did not suggest an algorithmic solution, but merely the

mathematical method. Known now as the “Levenshtein distance” or “edit distance”,

it allows for the matching of strings of different sizes. This brings about the advantage

of being able to compare strings that are not directly aligned with one another. It also

enables to check if a search string contains a subset similar to the target string more

than once. In addition, it identifies not only direct mismatches, but differences due

to additions, subtractions and substitutions of characters. Because of its flexibility,

this method is the main root of most modern implementations of string matching

algorithms for a variety of applications. The problem solved by the Levenshtein dis-

tance can be defined as follows: find all locations in a character search string t of

finite length n that contain a substring similar to a target string p of finite length

m where n ≥ m. The similarity is defined by each subset having a maximum of k

number of differences from the target string. It is assumed that both strings only

contain characters that belong to a finite alphabet Σ. This, results in obtaining the

minimum number of operations needed to transform one string into the other, where

an operation is an insertion, deletion, or substitution of a single character. The Lev-

3

Fig. 1.2: Levenshtein Distance - Resulting Matrix

enshtein distance applies a dynamic programming approach that can be formulated

as follows:

• Build an (m+1) * (n+1) matrix D, indexed as D [i][j]

• Initialize D [*][0] = i, D [0][*] = 0

• If p[i] = t [j], D [i][j] = D [i -1][j -1]

• If p[i] 6= t [j], D [i][j] = 1 + min(D [i -1][j], D [i -1][j -1], D [i][j -1])

• Report all instances of D [m][j] ≤ k

Where p = search string, n = size of search string, t = target string, m = size of

target string, k = mismatch threshold.

The time complexity for this algorithm is Θ(nm) and the space complexity is also

Θ(nm). Figure 1.2 shows an example of a resulting matrix from a complete search

operation using the Levenshtein distance algorithm. The highlighted cells show the

path to the exact match of the target string in a subset of the search string. The

resulting cell values in the last row of the matrix indicate how different the target

string is from the search string at that given subset in the search string. A resulting

4

cell value of zero in the last row indicates an exact match. A value of one means

that there is at least one change that must be applied for the subset or the target so

they can be the same. A value of two means that there are two changes required and

so on. A basic implementation of this algorithm in C++ using the STL is shown in

Table 1.1.

Tab. 1.1: Levenshtein Distance (Θ(nm) Space)- C++ Code Sample

vector<int> LD_NM_Space(const std::string& source, const std::string& target, int k){
int sourceLen = (int)source.length();

int targetLen = (int)target.length();

vector<int> locationVector;//declare the location vector

if(sourceLen == 0 || targetLen == 0)//check for emptry strings

return locationVector;

//Build the matrix. It will be accessed as matrix[row, col]

std::vector< std::vector<int> > matrix(targetLen + 1);//sets the rows

for(int i=0; i <= targetLen; i++)

matrix[i].resize(sourceLen + 1);//columns

for(int i=0; i <= targetLen; i++)//initialize the first column

matrix[i][0] = i;

for(int j=0; j <= sourceLen; j++)//initialize the first row

matrix[0][j] = 0;

//perform the matching operation

for(int i=1; i <= targetLen; i++)//rows

{
for(int j=1; j <= sourceLen; j++)//cols

{
if(target[i-1] == source[j-1])

matrix[i][j] = matrix[i-1][j-1];

else

matrix[i][j] = 1 + std::min(std::min(matrix[i-1][j-1], matrix[i-1][j]), matrix[i][j-1]);

if(i == targetLen && matrix[i][j] <= k)//record any matches <= k

locationVector.push_back(j);

}
}

return locationVector;

}

5

One can easily notice that the dynamic programming computation of each cell in

the matrix only relies on data from previously computed neighbor cells to the left,

top, and top-left. This in turn means that the algorithm can be reformulated and

improved to only use Θ(2m) space. This is because all that is needed is the current

and previously computed column in the dynamic matrix. Instead of maintaining

all cells of the matrix for a total of n*m cells, we may only maintain the current

and last column of the dynamic matrix and during the process we can in a separate

structure keep track of the location of the matches found. This simple improvement

can greatly improve memory usage in the computing system when large strings are

being matched. Table 1.2 shows a sample implementation of this method in C++

using the STL. Notice that these sample implementations take as input the complete

search and target strings. This is possible for relatively small data sets. In a more

realistic approach, the search data may be too large to maintain in memory at all

times and so the algorithm must stream subsets of the data from file. This technique

also improves the memory usage of the algorithm at any given time since it is working

with smaller chunks of the total search string at one time.

6

Tab. 1.2: Levenshtein Distance (Θ(2m) Space) - C++ Code Sample

vector<int> LD_2M_Space(const std::string& source, const std::string& target, int k){
int sourceLen = (int)source.length();

int targetLen = (int)target.length();

vector<int> locationVector;//declare the location vector

if(sourceLen == 0 || targetLen == 0)//check for emptry strings

return locationVector;

//vector p will always be the current active vector.

//vector q will always be “the previous vector”

//the pointer *temp is needed to swap between the current and last vector

int* p = new int[targetLen + 1];

int* q = new int[targetLen + 1];

int* temp;

for(int j=0; j <= targetLen; j++)//Initialize the first col

q[j] = j;

//perform the matching operation

for(int i=1; i <= sourceLen; i++)//cols

{
p[0] = 0;//first cell in the column is always zero

for(int j=1; j <= targetLen; j++)//rows

{
if(target[j-1] == source[i-1])

p[j] = q[j-1];

else

p[j] = 1 + std::min(std::min(q[j-1], q[j]), p[j-1]);

if(j == targetLen && p[j] <= k)//record any matches <= k

locationVector.push_back(i);

}

//swap the active/previous vectors

temp = p;

p = q;

q = temp;

}

delete[] p;

delete[] q;

return locationVector;

}

7

1.1.3 Improving Time Complexity

It is important to improve on the amount of space used by the algorithm, but in

practice it is more important to improve on the time complexity of the Levenshtein

distance algorithm. There has been extensive research in this area in the past decades,

and great improvements to the overall time needed to execute the algorithm have been

found. In 1985 Ukkonen[15] produced an algorithm capable of performing the match

in an expected average time of O(kn). In 1988 Landau and Vishkin[11] improved on

this to assure a worse case time of O(kn) using O(n) space. In 1996, Wu, Manber and

Myers[19] produced a search technique based on the 4-Russians algorithm that has

an expected average execution time in O(kn/log s) where O(s) was to be dedicated

time spent to access a lookup table. The success of some of these algorithms was

based on the strategy to more intelligently segregate out regions of the search string

in the dynamic matrix that would not produce matches within the threshold of k. Im-

plementations that use this approach are referred to as “filtering” search algorithms.

They were originally introduced in 1987 by Karp and Rabin[9] for searches involving

exact matches, but the idea carried over into approximate string matching. These al-

gorithms usually preprocess/parse the search string to eliminate all but those subsets

that have a high probability of yielding the desired matches with the target string.

The key in this method is to have a high level of “filtration efficiency”, meaning that

the algorithm can effectively remove a large percentage of the search regions that will

not yield matches. In cases of high efficiency, these types of algorithms usually deliver

the fastest results. The downfall to this technique is that as the mismatch threshold

k increases in proportion to the target string m, the ability to filter out sections of

8

the search string quickly diminishes to the point of no longer being effective at all.

1.1.4 The Bit-Parallel Approach

Begining in the early 1990’s, researchers began to look for new ways to improve the

performance of search algorithms by looking at ways to parallelize their execution.

The idea was to minimize the time necessary to complete a search operation by doing

multiple computations at the same time instead of having the algorithm execute in

a fully serialized mode. After vast analysis into the nature of the computations that

are necessary to generate the dynamic matrix in the Levenshtein distance algorithm,

a new idea was born; a paradigm known as “bit-parallel” or “bit-vector” search algo-

rithms. These algorithms take advantage of the fact that modern computer systems

perform computations on vectors of binary data (i.e., a machine word). The idea is

to organize several pieces of information into a single bit-vector such that each will

be computed in a single operation instead of doing each of those pieces separately in

multiple computations. This ultimately provides a method of parallelization with a

maximum possibility of gaining a degree of parallelism of w, given that a single bit is

used to represent the needed information during computation, where w is the word

size of the machine. What makes this approach so unique is that unlike most methods

of parallelization, it does not depend on multiple processing units. The parallelization

occurs with a single processor.

One of the first bit-parallel algorithms produced was done by Baeza-Yates and

Gonnet[1] in 1992. They developed an algorithm with a time complexity of O(ndm/we)

for the use with exact matching and a O(ndmlogk/me) for the case of an arbitrary

9

number of mismatches k. Also in 1992, Wu and Manber[18] produced a k mismatch

algorithm that ran in a time of O(nkdm/we). These were developed specifically for

applications in text-retrieval and therefore involved small target strings making m

small enough compared to w such that the expression between the ceiling braces in

the time complexity functions is 1. In this use case, the execution time for the al-

gorithms is O(kn). Wright[17] demonstrated an algorithm with a O(nlog2αdm/we)

running time. He used 3 bits per character in the bit-parallel encoding. This pro-

vided a degree of parallelization of 21 when used with a 64-bit computing system and

a relatively small alphabet size α of 8. In 1996 Baeza-Yates and Navarro[2] improved

on the algorithm by Wu and Manber[18] to a time complexity of O(ndkm/we). This

implementation executed in linear time O(n) for instances when the product of km

is ≤ w. For many implementations, this was the expected use case. By this time,

bit-parallel algorithms had become among the fastest methods for approximate string

matching.

In 1999, Gene Myers[14] published a bit-parallel algorithm that performed with an

even better time complexity of O(ndm/we). This implementation was proven to have

outperformed all its predecessors in nearly all cases. Because of the encoding method

used, searches with relatively small target size m compared to the search string n run

in linear time O(n). Because of its efficiency, this algorithm was the base bit-parallel

implementation chosen for the work in this thesis. Chapter 2 explains in detail the

design and implementation used by Myers for this algorithm.

10

1.2 Bioinformatics

Bioinformatics is a relatively new and fast growing field. It has arguably only been

around for about half a century. For this reason, there is no single standard definition

for Bioinformatics. The National Cancer Institute defines Bioinformatics as: “The use

of computing tools to manage and analyze genomic and molecular biological data.”.

One of the largest affiliations in the field, Bioinformatics.org, defines it as: “the use

of computers to characterize the molecular components of living things”. A more

general definition can describe Bioinformatics as an interdisciplinary area of study

that intersects the fields of Biology and Computer Science. It attempts to help

collect, process and analyze data generated by the study of living systems. There

are several major areas of study in Bioinformatics, including: sequence analysis,

comparative genomics, functional genomics, protein expression, protein structure,

simulation modeling and gene regulation. In all, Bioinformatics was born out of

the need to have efficient computing tools for analyzing the large amounts of data

that is generated in these fields of study. Without the parallel advancement of the

computing tools used in Biological data analysis, Biological knowledge would likely

not be as advanced as it is today.

1.2.1 DNA

Much of the work that concerns Bioinformatics has to do with the study of the

processes related to DNA (Deoxyribonucleic Acid). This is the nucleic acid that

contains the genetic instructions needed to build the components that make up all

living organisms on the planet. Nucleic acids are the macromolecules that dictate the

11

amino acid sequence of proteins, which, in turn, control the basic life processes. They

are passed from parent to offspring and also store information that determines the

genetic characteristics of cells and organisms. Nucleic acids are made up of nucleotides

connected to form long chains. Each consists of three parts. One part is a pentose

(5-carbon sugar), which may be either a ribose or deoxyribose. The second part is a

phosphate group. The third is a nitrogen base, which is a single or double ringlike

structure of carbon, hydrogen, and nitrogen.[4]

Nucleic acids that contain ribose are called ribonucleic acids, or RNA. Those con-

taining deoxyribose form DNA. In DNA, each of the four different nucleotides contains

a deoxyribose, a phosphate group, and one of four bases of adenine (A), thymine (T),

guanine (G) or cytosine (C). RNA is similar also made up of four bases except that

instead of using thymine, it contains uracil (U). DNA polymers can be enormous,

containing millions of these nucleotides organized within cells in structures called

chromosomes.

DNA was discovered in 1869 by Johann Friedrich Miescher when he isolated a sub-

stance he called “nuclein” from the nuclei of white blood cells.[8] For many decades,

DNA was largely ignored by biologists because it was not believed to have the ability

to code genes. This changed in 1944 when Oswald Avery proved that genes indeed

resided within DNA.[8] The next major development that launched the modern era

of DNA research occurred in 1953 when James Watson and Francis Crick published a

one page paper after discovering the double helical structure of a DNA molecule.[16]

This was based partly on the work by Erwin Chargaff who in 1950 discovered that

there was a one-to-one ratio of adenine-to-thymine and guanine-to-cytosine content

12

Fig. 1.3: DNA Base Pairing

in DNA, known as the Chargaff rule. Also from the work of Maurice Wilkins and

Rosalind Franklin in 1951, when they obtained sharp x-ray images of DNA that sug-

gested DNA was a helical molecule. Watson and Crick arrived at this very simple

and elegant double helical structure for DNA after learning that the two strands were

held together by hydrogen bonds between specific base pairings: adenine-thymine

and guanine-cytosine. Figure 1.3 shows the chemical bonds at work in this base

pairing mechanism. This meant that the nucleotide string of one strand defined the

nucleotide string of the other. This was the key to understanding DNA replication.

Figure 1.4 shows a graphical example of the structure of DNA.

1.2.2 DNA-RNA Connections

There exists a direct connection between DNA and RNA. DNA is the blueprint for the

production of hundreds of different kinds of cellular proteins. By controlling protein

synthesis, DNA controls the structure and function of cells. Sequences of amino acids

form the make up of proteins and define their three dimensional structure. Since

DNA directs this sequence of amino acids, it dictates the function of proteins. DNA

13

Fig. 1.4: DNA Structure

14

uses RNA to carry out the actual synthesis of proteins. DNA holds the master

set of instructions that is kept secure in the nucleus of the cell. Copies of these

instructions are then used to carry the information to structures called ribosomes.

The structures that carry this information are called messenger RNA (mRNA). These

are synthesized in the nucleus where the master DNA information exists. Two cellular

processes, under the direction of DNA, lead to the formation of the primary structure

of proteins: transcription, or RNA synthesis, and translation, or protein synthesis.[4]

All proteins that exist are created through this process and flow of information. The

sequence is:[8]

DNA → transcription → RNA → translation → protein

1.2.3 Genetic Codes

In 1820 Henry Branconnot identified the first amino acid, glycine. Within the next

century, all twenty amino acids in existence had been discovered and their chemical

structure had been identified. In the early 1900’s, Emil Hermann Fischer showed that

amino acids were linked together in to linear chains to form proteins. But there was

little known at this time as to what processes took place for generating amino acids.

The code responsible for the transformation of DNA into proteins was unknown.[8]

Marshall Nirenberg and Heinrich J. Matthaei working at the National Institute

of Health in Bethesda, Maryland, made the first major breakthroughs in cracking

the genetic code. The key was in mRNA. They conducted a set of experiments

using synthetic strands of RNA made up of only uracil. This was added to each of

20 different test tubes containing ribosomes, enzymes and other factors needed for

15

protein synthesis. However, each test tube contained a different radioactive amino

acid. In one of the test tubes, the radioactive amino acid was incorporated into

polypeptide chains. This is when they realized they had found the genetic code

for phenylalanine, three uracil bases in a row (UUU). Biochemists had previously

concluded that a triplet of nucleotides, also known as a codon, might represent a code

that specifies a particular amino acid to be incorporated into a protein. Nirenberg

and Matthaei had discovered the first codon. Soon after, all other mRNA codons for

amino acids were discovered. With the understanding of codons, a higher degree of

prediction for the generation of amino acids was possible. A DNA sequence of n-base

pairs will make a protein of a specific n
3

amino acids in a specific order. In addition,

it is known that there are 43 = 64 different codons. This is many times more than

the number of amino acids, which implies that the code for transforming DNA in

to protein is degenerate, meaning that different codons can code for the same amino

acid.[8] Table 1.3 shows the mRNA genetic code for amino acids. Included in the

table are also special types of codons that signal the start and stop control sequences

used during translation.

In cells, sets of DNA bases that code or regulate for particular proteins are called

genes. These genes are stored in one or more structures called chromosomes. Chromo-

somes can contain thousands of genes in a single long DNA helix. Different organisms

have different numbers of chromosomes with different number of genes on each. The

complete set of genes in an organism is called its genome. Humans have 23 pairs

of chromosomes giving a total of 46, and a genome consisting of about three billion

DNA bases. Other organisms such as a fruit fly contain only 140 million bases. Ta-

16

Tab. 1.3: Codon Codes for Amino Acids

Amino Acid Abbreviation Codons

Alanine Ala GCU, GCC, GCA, GCG

Cysteine Cys UGU, UGC

Aspartic acid Asp GAU, GAC

Glutamate Glu GAA, GAG

Phenylalanine Phe UUU, UUC

Glycine Gly GGU, GGC, GGA, GGG

Histidine His CAU, CAC

Isoleucine Lle AUU, AUC, AUA

Lysine Lys AAA, AAG

Leucine Leu UUA, UUG, CUU, CUC, CUA, CUG

Methionine Met AUG

Asparagine Asn AAU, AAC

Proline Pro CCU, CCC, CCA, CCG

Glutamine Gln CAA, CAG

Arginine Arg CGU, CGC, CGA, CGG, AGA, AGG

Serine Ser UCU, UCC, UCA, UCG, AGU, AGC

Threonine Thr ACU, ACC, ACA, ACG

Valine Val GUU, GUC, GUA, GUG

Tryptophan Trp UGG

Tyrosine Tyr UAU, UAC

Start AUG

Stop UAG, UGA, UAA

17

ble 1.4 illustrates a compilation of statistics for the human chromosomes, based on the

Sanger Institute’s human genome information in the Vertebrate Genome Annotation

(VEGA) database. The numbers for genes and bases are estimates based on gene

predictions and size of un-sequenced heterochromatin regions.

1.2.4 Coding Errors

The codons contained in mRNA have an interaction with the ribosomes which con-

tain various large molecular structures. The ribosomes are responsible for reading

consecutive codons in the mRNA and locating the matching amino acid required for

inclusion in the growing polypeptide chain in process. The ribosomes provide much of

the physical infrastructure necessary for the production of proteins. To assist in the

location of the proper amino acid for a given codon, a particular type of RNA known

as transfer RNA (tRNA), is used. Transfer RNA molecules are made up of three

base segments called an anticodon. Each anticodon is complementary to the codon in

mRNA. There are twenty different types of tRNA to match the twenty types of amino

acids. Each type of amino acid binds to a particular tRNA. Similar to DNA base

pairing, the anticodon on the tRNA sticks to the codon on the RNA, which makes

the amino acid available to the ribosome to add to the polypeptide chain. As each

amino acid is added, the ribosome shifts one codon to the right, and then repeats

the process. This process of turning mRNA into a protein is known as translation,

because it translates information from the RNA (written in a four-letter alphabet)

into the protein (written in a 20-letter alphabet).[8]

This mechanism for producing proteins is not always correct. Proofreading by

18

Tab. 1.4: Human Chromosomes

Chromosome Genes Total bases Sequenced bases

1 3,148 247,200,000 224,999,719

2 902 242,750,000 237,712,649

3 1,436 199,450,000 194,704,827

4 453 191,260,000 187,297,063

5 609 180,840,000 177,702,766

6 1,585 170,900,000 167,273,992

7 1,824 158,820,000 154,952,424

8 781 146,270,000 142,612,826

9 1,229 140,440,000 120,312,298

10 1,312 135,370,000 131,624,737

11 405 134,450,000 131,130,853

12 1,330 132,290,000 130,303,534

13 623 114,130,000 95,559,980

14 886 106,360,000 88,290,585

15 676 100,340,000 81,341,915

16 898 88,820,000 78,884,754

17 1,367 78,650,000 77,800,220

18 365 76,120,000 74,656,155

19 1,553 63,810,000 55,785,651

20 816 62,440,000 59,505,254

21 446 46,940,000 34,171,998

22 595 49,530,000 34,893,953

X (sex chromosome) 1,093 154,910,000 151,058,754

Y (sex chromosome) 125 57,740,000 22,429,293

19

enzymes and ribosomes eliminates many errors as proteins are synthesized, but not

all are eliminated. Some errors can and do occur in the process. The most common

error results from misreading the nucleotide sequence. Initiation determines exactly

where translation will begin and how the nucleotide sequence will be grouped into

codons. The grouping of bases into codons is called the reading frame. If this frame

is shifted by one of two nucleotides in any direction, the nucleotide sequence will

produce a different sequence of amino acids.[10] For example, AAU GCG GAC UA

would specify asparagine-alanine-aspartate. If the reading frame were shifted one

nucleotide to the right, the message would read methionine-arginine-threonine. This

would not be the intended sequence to be generated.

1.2.5 Mutations

In some cases, errors can occur in the cell nucleus from the DNA itself. Certain

segments of DNA are repeated frequently. Some of the repeated segments may become

inverted, coding backwards. Some segments mysteriously jump to a new location on

the DNA molecule, resulting in incorrect regions along the DNA strand. Alleles are

alternative forms of a gene that have slightly different base sequences as a result of

mutation. A change in the sequence of nucleotide bases in a gene for a particular

protein can result in a different sequence of amino acids in the protein. As a result,

the three-dimensional structure and, therefore, the function of the protein may be

different. The differences in gene function derived from unlike alleles in a population

provide the genetic variation on which natural selection can act. An example of alleles

is found in the gene that codes for the brown pigment molecules in the iris of the eye.

20

Brown eyes result from an allele that produces functional pigment. People with blue

eyes have alleles of this gene that code for defective pigment molecules. Thus, little

pigment is deposited in the iris, and the eyes appear light colored.[4]

Another source of genetic variation are mutations. In animals and many plants, a

mutation cannot be passed to the next generation unless it is contained within the

chromosomes of a gamete. In plants though, any cell has the potential to produce

a new plant, and mutations can be passed on more easily. Mutations occurring in

somatic cells, in the body of humans and other animals, may initiate various types

of cancers within individuals. This is the reason why mutagens, agents that cause

mutations, in the environment are of concern to the health of humans and animals.

There exist several types of mutations. In the case of point mutations, a single

base pair of DNA is improperly paired during replication. Proofreader enzymes in the

nucleus check for the correct matching of bases during replication and usually replace

any mispaired bases. On occasion, however, a spontaneous mistake escapes detection.

The mispairing of bases may be caused by mutagenic chemicals or radiation. Some

chemicals resemble bases, are inserted in the forming DNA chain, and then pair with

incorrect bases during the next DNA replication. It is a matter of chance on whether

or not a single change in base sequence will cause the use of the wrong amino acid

sequence of a protein because of the degenerate nature in which codons code for amino

acids. In some cases, a single changed nucleotide accidentally forms a stop codon and

the resulting polypeptide chain is terminated prematurely.

The most likely types of mutations to disrupt the genetic code are additions and

deletions. Adding or removing some bases from the codon sequence, can result in

21

a frame-shift mutation, in which the reading frame of the message is altered. Ul-

traviolet light often causes the formation of covalent bonds between two adjacent

thymine nucleotides. The resulting double thymine nucleotide blocks the replication

and transcription of DNA. Mutations can also occur in a larger scale in the form of

chromosomal alterations. Some of these changes can be attributed to damage caused

by ionizing radiation, such as x-rays or gamma-rays. These forms of energy can lib-

erate electrons and create explosively reactive chemicals called free radicals that can

alter bases in DNA or even tear apart DNA strands. If repair enzymes cannot repair

the broken ends, a section of a chromosome may be lost in the next cell division. This

type of mutation is known as a deletion. Another type is known as inversion, where a

broken section of DNA sequence is reattached, but in reverse order. Duplication oc-

curs when a fragment becomes attached to its homologous chromosome, and the genes

contained in the fragment already exist on the homologous chromosome.[4] When bro-

ken pieces swap positions on different chromosomes, an event called a translocation

takes place.

1.3 String Matching In Bioinformatics

String matching plays an essential role as a computational tool in Bioinformatics. This

is especially evident in the area of Bioinformatics known as comparative genomics.

This field of study attempts to exploit both similarities and differences in the DNA,

RNA, proteins, and regulatory regions of different organisms to infer how mutations

and other aspects of natural selection has acted upon these elements.[5] Comparing

genomic sequences is often the key to understanding each of them, which is why recent

22

efforts to sequence many related genomes such as those of humans and chimpanzees

provide the best hope for understanding the language of DNA. For example, suppose

that we have the genomic sequences of two insects that we suspect are somewhat

related in their evolutionary paths; perhaps a fruit fly (Drosophila melanogaster)

and a malaria mosquito (Anopheles gamibae). We would like to know which parts

of the fruit fly genomic sequence are dissimilar and what parts are similar to the

mosquito genomic sequence. This can help identify linkages in their evolutionary

history and can point out the subsets of their genome responsible for the development

of the unique physiologies of each species. These can also help to outline how each

species has been affected by its environment and therefore evolved to cope with its

surroundings.

Comparative genomics can be broken down into several more defined areas of study

and into the particular computational problems that can solve each of those. The

following subsections introduce some of these challenging problems and how string

matching algorithms can be used as tools to solve them.

1.3.1 Restriction Mapping

Restriction mapping is the process of obtaining structural information on a piece of

DNA by the use of restriction enzymes. Restriction enzymes are enzymes that cut

DNA at specific recognition sequences called sites. They are believed to have evolved

as a bacterial defense against DNA bacteriophage. DNA invading a bacterial cell

defended by these enzymes will be digested into small, non-functional pieces. The

name restriction enzyme comes from the enzyme’s function of restricting access to

23

the cell. A bacterium protects its own DNA from these restriction enzymes by having

another enzyme present that modifies these sites by adding a methyl group. For

example, E.coli makes the restriction enzyme Eco RI and the methylating enzyme

Eco RI methylase. The methylase modifies Eco RI sites in the bacteria’s own genome

to prevent it from being digested.[7]

In 1970 Hamilton Smith discovered that the restriction enzyme HindII cleaves

DNA molecules at every occurrence, or site, of the sequence GTGCAC or GTTAAC,

breaking a long molecule into a set of restriction fragments.[8] Since this discovery,

restriction maps have become a useful tool helping to narrow down the location of

certain genetic markers. A restriction map for HindII of a given DNA sequence

amounts to finding all occurrences of GTGCAC and GTTAAC. This is clearly a

problem that can be solved via a string matching routine by having the restriction

site strings as targets and the DNA sequence as the search string. Figure 1.5 shows

an example of how the dynamic programming approach of the Levenshtein distance

algorithm can be used to find the location of the restriction site GTGCAC in a random

DNA sequence.

1.3.2 Motif Finding

The problem of discovering motifs, involves finding approximately repeated patterns

in unaligned sequence data. It is important in uncovering transcriptional networks, as

short common subsequences in genomic data may correspond to a regulatory protein’s

binding sites, and in protein function identification, where short blocks of conserved

amino acids code for important structural or functional elements.[20] The biological

24

Fig. 1.5: Example of Levenshtein Distance Algorithm for Finding the Location of a Restriction Site

25

problems addressed by motif finding are complex and varied, and no single currently

existing method can solve them completely. For DNA sequences, motif finding is

often applied to sets of sequences from a single genome that have been identified

as possessing a common motif, either through DNA micro-array studies, ChIP-chip

experiments or protein binding micro-arrays. An orthogonal approach attempts to

identify regulatory sites among a set of orthologous genes across genomes of varying

phylogenetic distance.[3] For protein sequences, and especially in the case of divergent

sequence motifs, it is particularly useful to incorporate amino acid substitution ma-

trices. Often, motif finding methods are either tailor-made to a specific variant of the

motif finding problem, or perform very differently when presented with a diverse set

of instances. In nearly all cases, some form of string matching algorithm is generally

applied as a successful solution.

A practical example can be found in fruit flies whom like humans, are susceptible

to infections from bacteria and other pathogens. Although fruit flies do not have as

sophisticated an immune system as humans do, they have small set of immunity genes

that are usually dormant in the fly genome, but somehow get switched on when the

organism gets infected. When these genes are turned on, they produce proteins that

destroy the pathogen, usually curing the infection. It turns out that many immunity

genes in the frut fly genome have strings that are reminiscent of TCGGGGATTTCC

located upstream of the genes’ start. These short strings, called NF-kB binding sites,

are important examples of regulatory motifs that turn on immunity and other genes.

Proteins known as transcription factors then bind to these motifs, encouraging RNA

polymerase to transcribe the downstream genes.[8]

26

Finding these motifs generally involves searching without prior knowledge of how

the motifs sequence is defined. A popular approach to motif finding is based on the

assumption that frequent or rare subsequences may correspond to regulatory motifs

in DNA. It stands to reason that if a subsequence occurs considerably more frequently

then expected, then it is more likely to be some sort of “signal”, and it is crucially

important to figure out the biological meaning of that signal.[8]

1.3.3 Longest Common Subsequence

One of the simplest examples of using string matching to solve sequence similarity

is the Longest Common Subsequence (LCS) problem. This is important in Bioin-

formatics because many times it is useful to know what is the largest subset that is

common to two sequences. A common subsequence of two strings is one that is a

subsequence of both of them. More formally, a common subsequence of strings s =

s1...sn and t = t1...tn is defined as a sequence of positions in s,

1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ n

and a sequence of positions in t,

1 ≤ j1 ≤ j2 ≤ ... ≤ jk ≤ m

such that the symbols at the corresponding positions in s and t coincide:

siw = tjw for 1 ≤ w ≤ k

The LCS can be solved by slightly modifying the standard recurrence of the Lev-

enshtein distance algorithm to only allow insertions and deletions and turning it into

a maximization problem. In fact, the use of the Levenshtein distance algorithm with

27

different scoring mechanisms for matches, substitutions, additions and deletions can

be used to solve a variety of string matching problems. The recurrence to solve the

LCS can be formulated as follows:

• Build an (m+1) * (n+1) matrix D, indexed as D [i][j]

• Initialize D [*][0] = 0, D [0][*] = 0

• If p[i] = t [j], D [i][j] = D [i -1][j -1] + 1

• If p[i] 6= t [j], D [i][j] = max(D [i -1][j], D [i][j -1])

• Report the value of D [m][n]

Where p = first string, n = size of first string, t = second string, m = size of

second string.

Figure 1.6 illustrates the resulting matrix of a sample LCS computation. The

last cell with a resulting value of five represents the number of the longest common

subsequence between the two strings. This can also be seen in the illustration above

the resulting matrix in the sequence alignment, where five characters of each string

are matched according to the conditions. The shaded cells show the shortest route

that can be taken to obtain the similarity score.

28

Fig. 1.6: Example of Computing the Longest Common Subsequence Between Two Strings

29

2. MYERS’ BIT-PARALLEL ALGORITHM

One of the most effective techniques developed for performing approximate string

matching operations is the use of bit-parallel algorithms. As introduced in chapter 1

section 1.1, bit-parallel algorithms take advantage of the processing of bit-vectors

that is done by modern processors. They pack multiple pieces of information into

a single word that can be computed atomically. This enables the computation of

several units of data at the same time in a single operation and therefore generating

a parallel solution. One of the most effective bit-parallel algorithms known to date

is the one published by Gene Myers in 1999.[14] The algorithm design demonstrated

by Myers, was the one chosen and implemented as the bit-parallel component for the

approximate string matching solution presented in this thesis. This chapter describes

in depth the design and implementation of the bit-parallel algorithm by Myers. First,

section 2.1 describes the ideas behind the design of the bit-parallel approach. The

details behind implementing the basic algorithm with a limitation of a maximum

target string the size of a machine word is shown in section 2.2. Finally, section 2.3

shows how to extend the basic algorithm to be used without limitation of the size of

the target string.

30

2.1 The Design

The inspiration for the Myers’ algorithm comes from using the 4-Russians approach,

but using bit-vector computation instead of table lookup. The basic idea behind the

design, is to use bit-vectors to encode the list of m arithmetic differences between

successive entries in a column of the dynamic programming matrix that is generated

during the string matching computation. The operations computed using the bit-

vector approach are logical and not arithmetic for a more efficient encoding. In fact,

the design uses a single bit to express each unit of data, making the design fully

bit-parallel. The time complexity for this approximate string matching algorithm is

O(ndm/we).

The design of the bit-parallel solution assumes the standard description for the

approximate string matching problem. We assume to have a query sequence

P = {p1p2...pm}, a search text string T = {t1t2...tn}, and that we are given a positive

threshold k ≥ 0. We define δ(P,T) to be the unit cost edit distance between strings P

and T. Formally, the approximate string matching problem is to find all positions j in

T such that there is a suffix of T [1...j] matching P with a maximum of k differences,

that is j such that mingδ(P, T [g...j]) ≤ k.

The standard approach to this problem as we saw in chapter 1 section 1.1, is to

compute an (m + 1)× (n + 1) dynamic programming (d.p.) matrix

C[0...m, 0...n] for which it will be true that C [i,j] = mingδ(P [1...i, T [g...j]) at the

end of the computation. This operation can be computed in O(mn) time and O(mn)

space using the recurrence

31

C[i, j] = min





C[i− 1, j − 1] + (if pi = ti then 0 else 1),

C[i− 1, j] + 1,

C[i, j − 1] + 1





subject to the boundary condition that C [0, j] = 0 for all j. It follows that the

solution to the approximate string matching problem is all locations j such that

C [m, j] ≤ k.

A basic observation of from this basic implementation as illustrated in chapter 1

section 1.1 is that the computation above can be done in only O(m) space because

computing column Cj = 〈C [i, j]〉mi=0 only requires knowing the values of the previous

column Cj−1. This leads to the important conceptual realization that one may think

of a column Cj as a state of an automaton, and the algorithm as advancing from state

Cj−1 to state Cj as it scans symbol tj of the text. The automaton is started in the

state C0 = 〈0, 1, 2, ..., m〉 and any state whose last entry is ≤ k is considered to be

a final state.

In 1985, Ukkonen[15] showed that the automaton described here has a finite num-

ber of states, which is actually at most 3m. One can acknowledge this by observing

that the dynamic programming matrix C has the property that the difference between

adjacent entries in any row or any column is either 1, 0, or -1. A lemma providing

a more general version of this was first proven by Masek and Paterson in 1980[13]

in the context of the first 4-Russians algorithm for string comparison. Formally, we

define the horizontal and vertical deltas as:

horizontal delta ∆h[i,j] at (i, j) = C [i, j] - C [i, j-1]

vertical delta ∆v [i, j] at (i, j) = C [i, j] - C [i-1, j]

32

for all (i, j) ε [1, m] x [1, n]. We then have:

Lemma 1. ∀(i, j)(∆v[i, j], ∆h[i, j]) ∈ {−1, 0, 1}

Proof. Originally described by Ukkonen[15]. Since C[i, j] is always an integer, it

suffices to show that C[i, j]− 1 ≤ C[i− 1, j − 1] ≤ C[i, j]. The minimization step in

the recurrence directly implies that C[i, j] cannot be larger than C[i − 1, j − 1] + 1

and hence, C[i, j]− 1 ≤ C[i− 1, j − 1]. This is trivially true in the base case C[0, 0].

We proceed by induction on i + j. Assume first that the minimizing path to C[i, j]

comes from C[i− 1, j − 1]. Then the recurrence implies that C[i, j] = C[i− 1, j − 1]

or C[i, j] = C[i − 1, j − 1] + 1. Hence C[i, j] ≥ C[i − 1, j − 1], as required. We

then assume that the minimizing path to C[i, j] comes from C[i − 1, j] along with

the similar symmetric case where the path comes from C[i, j− 1]. Then again by the

recurrence, C[i, j] = C[i−1, j]+1. By induction hypothesis C[i−1, j] ≥ C[i−2, j−1].

Hence C[i, j] ≥ C[i− 2, j − 1] + 1. Finally, since C[i− 1, j − 1 ≤ C[i− 2, j − 1] + 1

by the recurrence, this implies that C[i, j] ≥ C[i− 1, j − 1] as required.

It follows that, to know a particular state Cj, it suffices to know the relocatable

column ∆vj = 〈∆v [i, j]〉mi=1 because C [0, j] = 0 for all j. One can see that the

automaton can have at most 3m states as there are 3 choices for each vertical delta.

The problem of computing the cell values in the dynamic programming matrix C

can thus be replaced with that of computing the relocatable dynamic programming

matrix ∆v. One potential difficulty in this method is that determining if ∆vj is

final requires O(m) time as one must determine if Σi∆vj[i] = C [m, j] ≤ k. While

this does not effect the asymptotics of most algorithmic variations on the basic d.p.

formulations, it is crucial to algorithms such as this one, which compute a block of

33

Fig. 2.1: Illustration of a Bit-Parallel Dynamic Programming Matrix

vertical deltas in O(1) time and thus cannot afford to compute the sum over these

deltas without affecting both their symptotic and practical efficiency. Fortunately,

we can simultaneously maintain the value of Scorej = C [m, j] as one computes the

∆vj values using the fact that Score0 = m and Scorej = Scorej−1 + ∆h[m, j]. The

horizontal delta in the last row of the matrix is required, but it will be shown later, this

delta at the end of the block of vertical delta’s is a natural by-product of the block’s

computation. Figure 2.1 shows the basic dynamic dynamic programming matrix and

the formulation of the delta values.

34

2.2 Developing the Basic Algorithm

The essential idea behind the algorithm is to compute successive ∆vj values in O(1)

time by using bit-vector operations. This is where the algorithm makes great perfor-

mance gains by performing the operations in parallel.

2.2.1 Assumptions

It is assumed for the rest of the description of this algorithm that the size of a machine

word is w and that m ≤ w. On most current machines, the word size is usually 32

or 64. It is also assumed that parallel bit operations as in or, and and not, as

well as simple arithmetic operations of addition and subtractions take the underlying

computing system constant time to complete on such words.

2.2.2 Representation

One of the basic challenges is to define the bit-vector representation for ∆vj. This is

accomplished by using two bit-vectors Pvj and Mvj, whose bits are set according to

whether the corresponding value in ∆vj is +1 or -1, respectively. Formally,

Pvj(i) ≡ (∆v [i, j] = +1)

Mvj(i) ≡ (∆v [i, j] = -1)

where the notation W(i) denotes the ith bit of the word W, and where i is assumed to

be in the range [1, w]. It must be noted that the ith bits of vectors Pv and Mv must

not be set simultaneously, and that we do not need a vector to encode the positions

i that are zero, as we know they occur when (¬(Pvj(i) ∨Mvj(i))) is true.

35

2.2.3 Cell Structure

It is necessary to develop an understanding of how to compute the deltas in one col-

umn from those in the previous column. To start, consider an individual cell of the

d.p. matrix consisting of the square (i-1, j-1), (i-1, j), (i, j-1), and (i, j). There are

two horizontal and vertical deltas: ∆v[i, j], ∆v[i, j − 1], ∆h[i, j] and ∆h[i− 1, j] that

are associated with the sides of this cell as illustrated in Figure 2.2(a). Further, let

Eq [i, j] be a bit quantity which is 1 if pi = tj and 0 otherwise. Using the definition of

the deltas and the basic recurrence for C-values we arrive at the following equation

for ∆v[i, j] in terms of Eq[i, j], ∆v[i, j − 1] and ∆h[i− 1, j]:

∆v[i, j] = C[i, j]− C[i− 1, j]

∆v[i, j] = min





C[i− 1, j − 1] + (if pi = ti then 0 else 1),

C[i− 1, j] + 1,

C[i, j − 1] + 1




− C[i− 1, j]

∆v[i, j] = min





C[i− 1, j − 1] + (1− Eq[i, j]),

C[i− 1, j − 1] + ∆v[i, j − 1] + 1,

C[i− 1, j − 1] + ∆h[i− 1, j] + 1




−(C[i−1, j−1]+∆h[i−1, j])

∆v[i, j] = min





−Eq[i, j],

∆v[i, j − 1],

∆h[i− 1, j]





+ (1−∆h[i− 1, j])

Similarly:

36

Fig. 2.2: Bit-Vector Cell Structure and Input/Output Function

∆h[i, j] = min





−Eq[i, j],

∆v[i, j − 1],

∆h[i− 1, j]





+ (1−∆v[i, j − 1])

We can then view the inputs to a cell as:

∆vin = ∆v[i, j − 1], ∆hin = ∆h[i− 1, j], Eq = Eq[i, j]

and the outputs as:

∆vout = ∆v[i, j], ∆hout = ∆h[i, j]

2.2.4 Cell Logic

There exist three choices for each of ∆vin and ∆hin and two possible values for Eq.

This implies that there is a finite number of inputs possible for a given cell, 18. From

this, evolved the key idea that one could compute the numeric values in a column

with Boolean logic.

It is conceptually easier to think of ∆vout as a function of ∆hin modulated by an

auxiliary Boolean value Xv capturing the effect of both ∆vin and Eq and ∆vout. This

37

is illustrated in Figure 2.2(b). By using a brute force enumeration of the 18 possible

inputs, it is possible to verify the correctness of the table presented in Figure 2.2(c)

which describes ∆vout as a function of ∆hin and Xv. In the table, the value -1 is

denoted by M and +1 by P, in order to emphasize the logical, as opposed to the

numerical, relationship between the input and output. Let Pxio and Mxio be the bit

values encoding ∆xio, that is, Pxio ≡ (∆xio = +1) and Mxio ≡ (∆xio = -1). From the

table, the following logical formulas capturing this function can be verified:

Xv = Eq ∨Mvin

Pvout = Mhin ∨ ¬(Xv ∨ Phin) (2.1)

Mvout = Phin ∧Xv

The following symmetric formulas for computing the bits of the encoding of ∆hout

are given by the relationship between ∆hout and ∆vin modulated by

Xh ≡ (Eq ∨ (∆hin = −1)):

Xh = Eq ∨Mhin

Phout = Mvin ∨ ¬(Xh ∨ Pvin) (2.2)

Mhout = Pvin ∧Xh

2.2.5 Preprocessing the Alphabet

The Boolean value of Eq[i, j] for each cell (i, j) is necessary during the evaluation

process. To represent this using bit-vectors, we need an integer Eqj for which

Eqj(i) ≡ (pi = s). The computation of these integers during the scan would require

O(m) time which is not what we expect from this solution. Fortunately, we can

38

Fig. 2.3: Bit-Parallel Scanning Stages

39

perform a preprocessing step before the scan begins and compute a table of the

vectors that result for each possible text character. Formally, if α is the alphabet

which makes up all characters in P and T, then we build an array Peq [α] for which:

Peq[s](i) ≡ (pi = s) (2.3)

Assuming that α is finite, he table construction can be achieved in O(|α| + m) time

and it occupies O(|α|) space.

2.2.6 The Scanning Step

The central inductive step is to compute Scorej and the bit-vector pair (Pvj, Mvj)

encoding ∆vj, given the same information at column j-1 and symbol tj. The concept

of the automata is kept and this step is referred to as scanning tj. The basis of the

induction is as follows:

Pv0(i) = 1

Mv0(i) = 0 (2.4)

Score0 = m

Meaning that at the start of the scan, the value of Score is m, the bit-vector Mv is

all 0’s and the Pv bit-vector is all 1’s.

The difficulty presented by the induction step is that given the vertical delta on its

left side, the only applicable formulas, namely (2.2), give the horizontal delta at the

bottom of the cell, whereas the goal is to have the vertical delta on its right side. This

can be accomplished in two stages as shown in Figure 2.3. First, the vertical delta

values in column j-1 are used to compute the horizontal delta values at the bottom

40

of their respective cells, using formula (2.2). Second, the horizontal delta values are

used in the cell below to compute the vertical deltas in column j, using formula (2.1).

The Score in the last row is updated between the two stages using the last hori-

zontal delta now available from the first stage, and then the horizontal deltas are all

shifted by one, pushing out the last horizontal delta and introducing a 0-delta for the

first row. Each stage serves as a pivot, where the pivot of the first stage is at the

lower left of each cell, and the pivot of the second stage is at the upper right. The

delta values swing in the arc depicted and produce results modulated by the relevant

X values. The computation of Xh and Xv is presented in subsection 2.2.7.

The logical formulas (2.1) and (2.2) for a cell and the illustration in Figure 2.3,

lead directly to the formulas below for accomplishing a scanning step. It must be

noted that the horizontal deltas of the first stage are recorded in a pair of bit-vectors,

(Phj,Mhj), that encodes horizontal deltas exactly as (Pvj,Mvj) encodes vertical

deltas as Phj(i) ≡ (∆h[i, j] = +1) and Mhj(i) ≡ (∆h[i, j] = -1).

Phj(i) = Mvj−1(i) ∨ ¬(Xhj(i) ∨ Pvj−1(i))

Mhj(i) = Pvj−1(i) ∧Xhj(i)

(Stage 1)

Score = Scorej−1 + (1 if Phj(m))− (1 if Mhj(m)) (2.5)

Phj(0) = Mhj(0) = 02

Pvj(i) = Mhj(i− 1) ∨ ¬(Xvj(i) ∨ Phj(i− 1))

Mvj(i) = Phj(i− 1) ∧Xvj(i)

41

(Stage 2)

It is important to note that the formulas above specify the computation of bits

in bit-vectors, all of whose bits can be computed in parallel with the appropriate

machine operations.

2.2.7 Computing the X-Values

To complete the induction presented in the last subsection, we must show how to

compute the bits of the bit-vectors Xvj and Xhj. From the logical formulas (2.1) and

(2.2) we have:

Xvj(i) = Peq[tj](i) ∨Mvj−1(i)

Xhj(i) = Peq[tj](i) ∨Mhj(i− 1) (2.6)

Where we make use of the pre-computed table Peq to lookup the necessary Eq bits.

The computation of Xvj at the beginning of the scan is simple, since Mvj−1 is an

input to the step. The computation of Xhj is more problematic because it requires

the value of Mhj which in turn requires the value of Xhj. This cyclic dependency

must be unwound. Lemma 2 gives this formulation of Xhj which depends only on the

values of Pvj−1 and Peq[tj].

Lemma 2. (∃k ≤ i)(∀x ∈ [k, i− 1])(Xhj(i) = Peq[tj](k) ∧ Pvj−1(x))

Proof. From formulas (2.1) and (2.1) for all k, Mhj(k) is true iff Pvj−1(k) and

Xhj(k) are true. By combining this with equation (2.6), it follows that

Mhj(k) ≡ ((Pvj−1(k)∧Peq[tj](k))∨((Pvj−1(k)∧Mhj(k−1)). By repeatedly applying

this, we obtain the desired statement by induction:

42

Fig. 2.4: Computing Xv

Xhj(i) = Peq[tj](i) ∨Mhj(i− 1)

= Peq[tj](i) ∨ (Pvj−1(i− 1) ∧Mhj(i− 2))

∨(Pvj−1(i− 1) ∧Mhj(i− 2))

= Peq[tj](i) ∨ Pvj−1(i− 1) ∧ Peq[tj](i− 1))

∨(Pvj − 1(i− 1) ∧ Pvj − 1(i− 2) ∧ Peq[tj](i− 2))

∨(Pvj − 1(i− 1) ∧ Pvj − 1(i− 2) ∧Mhj(i− 3))

= ...

= (∃k ≤ i)(∀x ∈ [k, i− 1])(Peq[tj](k) ∧ Pvj−1(x)) (as Mhj(0) = 0)

The last remaining obstacle is to determine how to compute the bit-vector Xh in

a constant number of word operations. Lemma 2 states that the ith bit of Xh is set

whenever there is a preceding Eq bit, say the kth and a run of set Pv bits covering

the interval [k, i− 1]. It is useful to think of the Eq bit as being “propagated” along

43

the run of set Pv bits, setting positions in the Xh vector as it does so. Addition

of integers has a similar effect on the underlying bit encoding. This is illustrated in

Figure 2.4. First, consider the effect of adding P and E together, where P has the

value of Pvj−1 and E that of Peq[tj]. Each bit in E initiates a carry-propagation chain

down a run of set P -bits that turns these bits to 0’s except where an E-bit is also

set. In the figure, this possibility is labeled “A False Start” because we observe that

the carry propagation can proceed beyond the end of a run of set P -bits because of

set E-bits. Therefore, one must first turn off all E-bits that are not covered by a run

of set P -bits as E & P , and then add this to P . It is possible to then capture all the

bits in P that have been toggled during the carry propagation by taking the exclusive

or of the result with P . Finally, it is possible to or in the E-bits to capture those

that were either not covered by a run of set P -bits, or that were not the initiators of

a carry propagation chain. From this, the following formula is derived and verified

by Lemma 3:

Xhj(i) = (((Peq[tj](i) ∧ Pvj−1) + Pvj−1)⊕ Pvj−1) ∨ Peq[tj]) (2.7)

Lemma 3.

If X = (((E ∧P)+P)⊕P)∨E, then (∃k ≤ i)(∀x ∈ [k, i− 1])(X(i) = E(k)∧P (x))

Proof. Figure 2.5 illustrates the mechanics of an addition automaton. A transition

of the form a, b/c is taken when the corresponding bits of the operands are a and b,

and bit c results. A 1 is output when in the Carry state iff the bits of the operands are

equal. The opposite is output if the automaton is in the No Carry state. Furthermore,

one is in the Carry state when processing bit i iff there is a previous bit position k,

for which the its of both operands are set and where at least one of the operands has

44

Fig. 2.5: The Addition Automaton

bits set in all positions between k and i. This leads to the formal logical description

of the effect of addition:

(∃k < i)(∀x ∈ [k, i−1])((Q+P)(i) = Q(k)∧P (k)∧(Q(x)∨P (x))) ≡ (Q(i) ≡ P (i))

Replacing Q by E ∧ P in this expression and then applying some simple logical

inferences leads to the conclusion that, if y = (E ∧ P) + P , then:

(∃k < i)(∀x ∈ [k, i− 1])(Y (i) = E(k) ∧ P (x)) ≡ (E(i) ∨ ¬(P (i)))

The next step is to use the interfaces that ((A ≡ B) ⊕ (P) iff (A ≡ (B ⊕ P)) and

that ((E ∨ ¬(P) ⊕ P) iff ¬(E ∧ P), to conclude that, if Y = ((E ∧ P) + P) ⊕ P ,

then:

(∃k < i)(∀x ∈ [k, i− 1])(Y (i) = E(k) ∧ P (x)) ≡ (¬(E(i)) ∧ P (i))

The last step requires the interface ((A ≡ B) ∨ E) ∧ ((¬B) → E) is equivalent to

(A∨E). This is true for all cases except when (A = 1, B = 0, E = 0). Meaning that,

if Y = (((E ∧ P) + P)⊕ P) ∨ E, then it follows that:

(∃k < i)(∀x ∈ [k, i− 1])(Y (i) = E(k) ∧ P (x) ∨ E(i)),

which is only a slight restatement of the conclusion of the lemma.

45

Tab. 2.1: The Basic Bit-Parallel Algorithm in Pseudocode

Line Pseudocode Formula

1. Precompute Peq[α] 2.3

2. Pv = 1m

3. Mv = 0 2.4

4. Score = m

5. for j = 1, 2, ...n do

6. {
7. Eq = Peq[tj]

8. Xv = Eq ∨M 2.6

9. Xh = (((Eq ∧ Pv) + Pv)⊕ Pv) ∨ Eq 2.7

10. Ph = Mv ∨ ¬(Xh ∨ Pv)

11. Mh = Pv ∧Xh 2.2

12. if Ph ∧ 10m−1 then

13. Score += 1

14. else if Mh ∧ 10m−1 then 2.5

15. Score -= 1

16. Ph ¿= 1

17. Mh ¿= 1

18. Pv = Mh ∨ ¬(Xv ∨ Ph) 2.1

19. Mv = Ph ∧Xv

20. if Score ≤ k then

21. ”Match found at ”, j

22. }

2.2.8 The Complete Algorithm

At this stage, it is possible to place all the pieces together to complete the algorithm.

Table 2.1 shows a complete specification in pseudocode. The table Peq is constructed

prior to the scan as specified by formula (2.3). The bit-vectors, Pv and Mv and the

integer Score are maintained during the scan and at the completion of scanning the

jth character contain the values of Pvj, Mvj and Scorej, respectively. These are

computed according to the formula (2.4) to correctly initiate the scan. To scan the

46

symbol tj, the algorithm uses five intermediate bit-vectors Eq, Xv, Xh, Ph, and Mv

in the interior of the scan loop. First, Xh and Xv are computed to have the values

of Xhj and Xvj according to formulas (2.6) and (2.7) using the variable Eq to factor

the common subexpression Peq[tj]. Then Ph and Mh are computed to hold the

horizontal deltas for the jth column with formula (2.2), Score is updated to the value

of Scorej using formula (2.5), and Pv and Mv are updated to hold the vertical deltas

in column j. Finally, the value of Score is checked to see if there is a match. The

complexity of the algorithm is O(mα+n) where α is the size of the alphabet α. Only

17 bit operations are performed per character scanned.

The last thing to consider is the case where m is unrestricted. This can be accom-

plished by modeling an m-bit bit-vector with dm/we words. An operation on such

bit-vector takes O(m/w) time. It follows that the basic algorithm described here runs

in O(mα + nm/w) time and O(αm/w) space.

2.3 General Target Length Extension

It is possible to extend the basic algorithm to a more general case where we can solve

for target strings with a size larger than w, the word size. It is necessary to understand

how to encapsulate the result of the basic algorithm into modules or blocks that can

be pieced together to solve larger problems. Similar to the input/output function

of a cell with its four deltas at its borders, it is possible to more generally think of

the computation of a u× v rectangular sub-array or block of cells as resulting in the

output of deltas along its lower and right boundary, given deltas along its upper and

left boundary as input.

47

Fig. 2.6: Block-Based Dynamic Programming

We can think of the basic algorithm as affecting the O(1) computation of 1 ×m

blocks under the special circumstances that the horizontal input delta is always 0.

More generally, we can use the result to effect the computation of 1×w blocks where

the horizontal input delta may also be -1 or +1. The left diagram in Figure 2.6

illustrates such a block and terms it a level b block since it extends from row (b−1)w

to row bw. If we limit out attention to only blocks on O(m/w) levels, we are still able

to cover any desired region of a d.p. matrix, and only O(αm/w) Eq-vectors need be

pre-computed.

The diagram to the right of Figure 2.6 shows a d.p. matrix and a hypothetical

zone that might be computed by an algorithm that can compute a partial region or

zone of a dynamic programming matrix. It illustrates how it is possible to take any

such underlying computation and perform it in fewer steps by computing the region

w cells at a time. This kind of tiling involves at most bmax = dm/we levels. The

following are additional aspects that must be considered:

48

1. The computation can proceed in a column sweep so that only bmax vertical delta

vectors need to be maintained at any one time, such that we can think of the

current vertical delta at level b.

2. The blocks at the boundaries of the matrix have deltas of either 0 or 1 depending

on the underlying computation. In Figure 2.6 0-deltas are depicted on the upper

boundary and 1-deltas on the left boundary of the matrix.

3. For blocks that have no predecessor at the same level in the previous column can

usually assume 1-deltas for their vertical inputs, as this conservatively models

values greater than those in the zone.

4. In the last level, blocks may extend beyond the last row by W = w−m (mod w)

cells. The simplest method to handle this case is to pad the length m sequence

with W extra wild-card symbols. The value of the interior horizontal delta in

a row m, then appears at the output of the level-bmax block W columns later.

This delay in output requires that one also pad the length n sequence with W

wild-card symbols, and that one extend a tiling W columns beyond the end of

the zone when in this last level, as shown in Figure 2.6.

49

3. MULTIPROCESSOR PARALLELISM

We have seen that bit-parallelism can improve the time complexity of the base algo-

rithm used for approximate string matching. The parallel aspect of the bit-parallel

algorithm is to take advantage of the ability to perform the computation of multiple

data units in parallel on a single processor. This chapter presents a design feature

used in addition to bit-parallelism; the use of multiple processors in parallel. The

idea for this approach is to further minimize the total time required to complete a

string matching operation by having multiple processors work simultaneously to solve

a single problem while using the bit-parallel algorithm. Section 3.1 introduces the

basic methods and challenges involved in order to successfully distribute the problem

to multiple processors. The implementation for the working solution is presented in

section 3.2. Finally, section 3.3 shows empirical results and analysis of that data.

3.1 Distributing the Problem

After analysis into the nature of the dynamic programming approach used in the

bit-parallel algorithm by Myers[14], it is possible to see that a multiprocessor design

should have great potential for efficiency. But before we can explore how to distribute

the problem of approximate string matching among several processors, it is necessary

to note some of the challenges involved in the process. There are several factors that

50

we must consider when designing this multiprocessor solution.

The main issue we must figure out is what work the different processors will perform

in parallel. We know that the computation of each cell in the dynamic programming

matrix depends only on the values of the current and previous columns. This low

level of data dependency between computed columns in the matrix means that the

construction of the columns can be logically partitioned into segments to be computed

by different processors simultaneously. The simplest approach is to partition the

search string into p subsets of equal size, where p is the number of processors. This

means that for a search string of size n, we would divide it into p subsets each of size

n/p. Ideally, each processor would independently work on its subset of search string

data and when complete simply report the locations in the subset that match the

target string.

This approach is efficient and requires no communication overhead between the

different processors, but there is one adjustment we must make in order to maintain

correctness. The problem is that even though the computation of each column in the

dynamic programming matrix only depends on the values of itself and the previous

column, the values contained in that previous column were derived from the column

previous to it. In other words, the Score that is maintained at the end of each column

in the matrix that is relevant for knowing if a match has occurred, depends on more

than just the current and previous column. Figure 3.1 illustrates this scenario. It

shows a comparison of the computation of the dynamic programming matrix using

single and dual processors for search string t=“GTTTACGTTGAGTGTGCG” of size

n = 18, target string p=“ATTG” of size m = 4 and a maximum mismatch k of 1.

51

Fig. 3.1: Illustration of Multiprocessor Left Boundary Problem

52

The sequence alignment shows that there are two instances of the target string in the

search string with a mismatch of 1 each. The resulting matrix for the single processor

case shows that the location for each match is at 10 and 14, respectively. The bottom

diagram shows two resulting matrices after distributing the search to two processors

without taking into account the issue of the derived value of Score. We can see that

the matrix for the second processor P2, fails to locate the match on location 10. This

is because the starting values in the left-most column are not equivalent to those

in the right-most column of the matrix produced by P1. Therefore, by using the

incorrect default values in the left boundary of the matrix in P2, successive columns

are generated with incorrect results.

The question then becomes: how many previous columns relative to the current

column must we consider at any given time to maintain a correct Score value? The

answer is m − 1, where m is the size of the target string. We can prove this by

analyzing the basic recurrence used in the approximate string matching algorithm.

C [i,j] = min{C [i-1, j-1] + (if pi = tj then 0 else 1), C [i-1, j] + 1, C [i, j-1] + 1}

Since the concern with the left boundary issue when segmenting the search string is

that we may miss a match in the current column due to not carrying over the values

of cells for previous matching characters, we must specifically pay close attention to

the part of the recurrence that accounts for a match. When a match occurs in the

current cell, it simply takes on the value of the cell nearest in the previous row and

column:

If pi = tj, then C[i, j] = C[i− 1, j − 1]

Due to the nature of the direct diagonal movement for matching values in cells, such

53

a value in a cell at the origin of the dynamic matrix can affect a maximum of m

columns. Since we don’t need to account for the current column as it is the one we

are currently computing, the overlap needed to fix the left boundary problem is only

the previous m− 1 columns. Figure 3.2 shows an example at work. The diagram at

the bottom illustrates that by appending m − 1 characters to the left of the search

string subset for P2, we are able to maintain the proper Score values at the bottom

row of the resulting matrix and therefore not missing the match at location 8. The left

boundary overlap only needs to take place for processor subsets that do not start at

the beginning of the search string. Therefore, P1 in the example does not require any

overlap. In all, it is necessary to overlap a total of (m−1)× (p−1) characters, where

p is the number of processors being used. It is important to note that this design

becomes impractical for use-cases where the target string is similar in size to the

search string. Therefore, it is assumed that the use-cases targeted by this solution

are those where m ¿ n. In practice, this can be used in a variety of real-world

applications in Bioinformatics where the target strings tend to be much smaller than

the search strings.

3.2 The Implementation

The system architecture for this bit-parallel/multiprocessor solution is based on the

use of MPI (Message Passing Interface), executing on an underlying network of het-

erogeneous workstations. MPI is a software layer that allows for the management of

parallel processes in a distributed memory system. This means that all sharing of data

between processors must take place through the use of message passing. Through this

54

Fig. 3.2: Overlapping m− 1 Characters on the Left Boundary

55

MPI interface, the same copy of a program can be executed in a predefined number

of processors simultaneously. At run-time, each processor is uniquely identified in se-

quence as {p0, p1, ..., ps−1}, where s is the number of processors being used. Using the

unique identifier, processes can direct communication or use broadcasting methods

for the purpose of sharing data, synchronization and other functions.

In this implementation, there is no explicit communication between processes. The

data used by the program on each processor, is assumed to be available on a shared

file on disk or redundant in a local disk to each processor. Each processor runs an

exact copy of the approximate string matching program. At run-time, each copy of

the program on the individual processors dynamically calculates the subset of the

search string it is responsible for working on. It then streams the necessary data

to local memory from an available file. Each processor completes its own alphabet

preprocessing and then performs the bit-parallel algorithm on the particular subset

of search string it is responsible for and maintains the locations of matches for the

given target string and threshold.

Using this design which applies virtually no unnecessary overhead, the bit-parallel

algorithm performed in a multiprocessor approach is shown to produce nearly perfect

parallel efficiency according to empirical results presented in the next section.

3.3 Empirical Results

This section presents empirical results gathered during a variety of experiments con-

ducted. The bit-parallel/multiprocessor program was tested on the raven cluster

which is hosted in the computer science department at the California State Univer-

56

sity San Bernardino. The cluster is made up of 13 Compaq Proliant DL-360 G2

machines. Each containing two Pentium III processors running at 1.4 GHz with

256MB of SDRAM. The cluster is connected via switched 1000GB Ethernet. Each

machine has access to both local and shared SCSI disks. The operating system on

each is Linux OS with Kernel version 2.4.20-8smp. The particular version of MPI

used is mpich-1.2.5.2. All program code was written in the ANSI C language and

compiled with the mpicc compiler. The complete program is made up of a single

source file named bp_mp.c and is fully available in Appendix A.

During testing, the raven cluster was fully dedicated to the given experiments.

The experiments tested for parallel performance on a number of variables including,

different number of processors p, different search string lengths n, different target

string lengths m and different mismatch thresholds k. The two basic measurements

used to analyze the results of tests conducted are speedup and efficiency. Speedup

is defined as the measure of how much faster an algorithm can execute in parallel

compared to the same algorithm running in sequential form. The formula for speedup

is defined as:

Sp = t1
tp

Where p is the number of processors, t1 is the sequential execution time and tp is the

parallel execution time. We can see that the optimal speedup would be equal to the

number of processors to which the algorithm is being distributed to. Efficiency is the

measure of real processor utilization during parallel execution. It is defined as:

Ep = Sp

p

The range of possible values are between [0,1], with 1 being optimal efficiency.

57

During each experimental run, time measurements were gathered for individual

runs with a given number of processors. Each data element gathered for time ex-

ecution on each processor represents the average value of 10 total runs. From this

data, the average and worse case executions were computed. Given a set of resulting

average execution times for p processors

T = {t1, t2, ..., tp},

the average execution time between processors is computed as:

Tave = (t1+t2+...+tp)
p

and the worse case time as:

Tmax = max(t1, t2, ..., tp)

The tests were arranged such that a single variable was modified per test in order

to properly direct the cause of any observed changes in performance. The search

and target strings for all tests were made up of the alphabet α = {A,C, G, T}. The

calculated results are presented here in a graphical form. Each figure contains two

graphs. The graph on the left shows a comparison of the worse case, average, and

ideal execution times using a base 10 logarithmic scale for the vertical axes and linear

scale for the horizontal axes. The graph on the right shows both the worse case,

average and ideal speedup along with the efficiency computed using the worse case

speedup values. This graph uses linear scaling in both the horizontal and vertical

axes. Prior to each result graph, a table demonstrates the mean from the collected

test data set. This is the value used for the average case in each plotted point on the

time graph, in seconds. The table also shows error analysis via the standard deviation

58

for the collected data set of 10 runs.

Figures 3.3, 3.4, 3.5, 3.6, 3.7 illustrate results using non-changing target string

of size m=16, mismatch threshold k=0, and processor range between [1-7] with the

variable being the size of the search string data. The results show nearly optimal

results for the first four cases. The exception is the last experiment with the 100MB

search string size. It this case, parallel usage with more than three processors results in

an increasing drop in overall speedup for an ultimate drop of about 22% from optimal

when using seven processors. The reason for this decrease in parallel performance is

the usage of a single shared data source for all processors. All processors access the

same storage hard disk to stream their respective subsets of the search string. Disk

access is the main bottleneck of the implemented solution.

One way to diminish the disk access bottleneck is to pre-distribute the search

string data to local disks for each processor. This can be easily done on a system

that uses a static number of processor nodes. Each processor then will have exclusive

access to its part of the search string data, eliminating collisions due to simultaneous

access. The amount of data used for left boundary patching can be estimated during

pre-distribution and adjusted at run-time if needed at a low cost. This was left as a

future performance improvement to the solution and not implemented here.

The group of figures 3.8, 3.9, 3.10 and 3.11 show resulting graphs for a variation

in the mismatch threshold k, while maintaining a static search string with n=25MB,

target string with m=16 and processor range of [1-7]. This set of experiments reveals

that the results are maintained at optimal parallel performance in all cases, showing

that a variation in the mismatch threshold k does not affect the parallel performance

59

of the solution.

The final group of graphs in figures 3.12 and 3.13 present a variation in the target

string size m, while maintaining static search string size n=25MB, mismatch threshold

k=0 and a processor range of [1-7]. Here as in the previous experiment group, the

variation in target string shows that the parallel efficiency of the solution is not

affected and results are maintained at a nearly optimal level. As noted in section

3.1, unless the target string becomes similar in size to the to the search string, the

effectiveness of the parallel distribution should remain highly efficient.

60

Tab. 3.1: Result Data for n=1MB, m=16, k=0, p=[1-7]

Processor Count 1 2 3 4 5 6 7

Mean Time 0.058767 0.029579 0.019840 0.015023 0.012019 0.010042 0.008804

Standard Dev. 1.4640e-4 6.7528e-5 3.4554e-5 1.4840e-5 1.5815e-5 6.3073e-6 2.0820e-5

Fig. 3.3: Result Graphs for n=1MB, m=16, k=0, p=[1-7]

61

Tab. 3.2: Result Data for n=10MB, m=16, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 0.58222 0.292271 0.195112 0.156071 0.123302 0.100374 0.086539

Standard Dev. 5.6863e-4 3.4502e-4 2.0661e-4 2.1278e-4 1.5246e-4 9.6198e-5 7.4856e-5

Fig. 3.4: Result Graphs for n=10MB, m=16, k=0, p=[1-7]

62

Tab. 3.3: Result Data for n=25MB, m=16, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 1.45406 0.729919 0.508467 0.403623 0.302807 0.247854 0.20933

Standard Dev. 1.9193e-3 1.1386e-3 7.3016e-4 3.7637e-3 6.0077e-4 4.0204e-4 1.8306e-4

Fig. 3.5: Result Graphs for n=25MB, m=16, k=0, p=[1-7]

63

Tab. 3.4: Result Data for n=50MB, m=16, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 2.90805 1.4578 1.0645 0.832698 0.650938 0.525132 0.428855

Standard Dev. 4.5025e-3 1.7785e-3 1.5858e-3 1.4891e-3 6.0121e-4 7.7184e-4 61112e-4

Fig. 3.6: Result Graphs for n=50MB, m=16, k=0, p=[1-7]

64

Tab. 3.5: Result Data for n=100MB, m=16, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 5.818791 2.919976 2.135254 1.639896 1.299515 1.063902 0.904460

Standard Dev. 6.1613e-3 4.7189e-3 4.9188e-3 1.3303e-3 2.7741e-3 3.1183e-3 1.6954e-3

Fig. 3.7: Result Graphs for n=100MB, m=16, k=0, p=[1-7]

65

Tab. 3.6: Result Data for n=25MB, m=16, k=2, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 1.47633 0.730161 0.521347 0.407431 0.308085 0.249336 0.209404

Standard Dev. 1.8011e-3 1.1405e-3 4.1629e-4 5.6869e-4 5.0279e-4 2.9167e-4 2.8607e-4

Fig. 3.8: Result Graphs for n=25MB, m=16, k=2, p=[1-7]

66

Tab. 3.7: Result Data for n=25MB, m=16, k=4, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 1.62783 0.81608 0.569348 0.424531 0.334487 0.277791 0.234083

Standard Dev. 2.6988e-3 8.7157e-4 4.9505e-4 6.3212e-4 6.4631e-4 3.7752e-4 4.0871e-4

Fig. 3.9: Result Graphs for n=25MB, m=16, k=4, p=[1-7]

67

Tab. 3.8: Result Data for n=25MB, m=16, k=8, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 2.20491 1.1059 0.757305 0.570285 0.448742 0.373546 0.316612

Standard Dev. 4.1673e-3 1.3454e-3 6.0432e-4 8.2862e-4 6.1433e-4 5.9175e-4 3.3842e-4

Fig. 3.10: Result Graphs for n=25MB, m=16, k=8, p=[1-7]

68

Tab. 3.9: Result Data for n=25MB, m=16, k=12, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 2.02305 1.0249 0.697125 0.534951 0.411318 0.340875 0.290851

Standard Dev. 3.0123e-3 1.8018e-3 1.0240e-3 8.8742e-4 4.0568e-4 3.1923e-4 2.6973e-4

Fig. 3.11: Result Graphs for n=25MB, m=16, k=12, p=[1-7]

69

Tab. 3.10: Result Data for n=25MB, m=64, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 1.44943 0.727571 0.485294 0.38491 0.297208 0.244951 0.210891

Standard Dev. 2.1726e-3 1.0186e-3 6.4107e-4 3.8009e-4 4.9277e-4 3.1795e-4 3.2941e-4

Fig. 3.12: Result Graphs for n=25MB, m=64, k=0, p=[1-7]

70

Tab. 3.11: Result Data for n=25MB, m=1K, k=0, p=[1-7]

Processors 1 2 3 4 5 6 7

Mean Time 1.46109 0.733322 0.49005 0.386702 0.299655 0.248396 0.211557

Standard Dev. 2.6578e-3 1.3791e-3 6.3991e-4 5.7579e-4 4.6806e-4 3.6315e-4 2.8247e-4

Fig. 3.13: Result Graphs for n=25MB, m=1K, k=0, p=[1-7]

71

4. CONCLUSION

There is an increasing need for effective, low-latency approximate string matching

algorithms for use in a variety of real world applications. This is especially true for

the field of Bioinformatics. This ever-growing field relies on the ability of computing

systems to serve as efficient tools in the management and analysis of genomic and

molecular biological data. This thesis shows that an approximate string matching

solution combining both a bit-parallel and multiprocessor design serves as a viable

answer. Empirical results prove that for most practical search cases where the size

of a target string is relatively small compared to the search string, nearly optimal

speedup is achieved.

72

APPENDIX A

SOURCE CODE

73

/*——————————————————

bp_mp.c

Author: Elias Chibli, elchibli@csci.csusb.edu

This source file implements a bit-parallel-multiprocessor

algorithm for approximate string matching. The bit-parallel

algorithm was originally designed by Gene Myers and is described in

his 1999 paper titled: ”A Fast Bit-Vector Algorithm for Approximate

String Matching Based on Dynamic Programming”. The original

algorithm has been modified here to be used in a multiprocessor

parallel environment using MPI.

——————————————————–*/

#include <stdio.h>

#include <stdlib.h>

#include <sys/file.h>

#include <string.h>

#include <ctype.h>

#include <math.h>

#include <sys/time.h>

#include ”mpi.h”

//——————————————————-

//Global variables and definitions

#define CONTROL_PROCESS 0

#define CHAR 0

#define WORD long

//The Alphabet: all possible character values in the 7-bit set

#define SIGMA 128

//Default read block size

#define BUF_MAX 2048

typedef struct { char type, *value; } element;

typedef struct

{
unsigned WORD P;

unsigned WORD M;

int V;

} Scell;

static int patlen;

static element *patvec;

static int W;

74

static unsigned WORD All = -1;

static unsigned WORD Ebit;

static unsigned WORD *TRAN[SIGMA];

static unsigned WORD Pc[SIGMA];

static int seg, rem;

//————————————————-

//setup_search()

//Performs the basic pre-processing step necessary for fast

//character matching at run time

//

void setup_search()

{
register unsigned WORD *b, bvc, one;

register int a; //alphabet loop counter

register int p; //pattern loop counter

register int i, k;

//8 bits in a byte * the number of bytes per word in this machine

W = sizeof(unsigned WORD)*8;

//How many WORD segments are needed to store the pattern. The +1 is needed

//because if the pattern is less than W, the result from the division is 0

seg = ((patlen - 1)/W) + 1;

//This is how many bits are not needed since we only care about those

//for the pattern

rem = seg*W - patlen;

//Allocate (WORD size: 4) * (Alphabet size: 128)

//* (the segments required to store the target pattern) + 1

b = (unsigned WORD *) malloc(sizeof(unsigned WORD)*(SIGMA*seg+1));

//loop over each possible character value (7-bits)

for (a = 0; a < SIGMA; a++)

{
TRAN[a] = b;

//loop over the pattern. Each loop go around looks

//at 32 characters, hence the (p+=W)

for (p = 0; p < patlen; p += W)

{
bvc = 0;

one = 1;

k = p+W;

if (patlen < k)

{

75

k = patlen;

}

for (i = p; i < k; i++)

{
if (patvec[i].type == CHAR)

{
if (a == *(patvec[i].value))

{
bvc |= one;

}
}

one <<= 1;

}

k = p+W;

while (i++ < k)

{
bvc |= one;

one <<= 1;

}

*b++ = bvc;

}
}

for (a = 0; a < SIGMA; a++)

{
Pc[a] = TRAN[a][0];

}

Ebit = (((long) 1) << (W-1));

}

//—————————————————–

//search()

//This is the bit-parallel approximate string matching function

//

//Parameters:

//char *filepath - path to data file

//long dif - maximum allowable string mismatches

//long sourceStartIndex - starting index within the data file for this search

//long sourceLen - length of characters to search from the start index

//long leftBoundPadSize - the number of characters padded on the left

// boundary for this search

//int nodeId - the id of the processor performing this search

//

76

void search(char *filepath,

long dif,

long sourceStartIndex,

long sourceLen,

long leftBoundPadSize,

int nodeId)

{
printf(”Node %i\n”, nodeId);

int num = 0;//container for the number of bytes read from file each time

int i = 0, base = 0, diw = 0, a = 0, Cscore = 0;

Scell *s, *sd;

unsigned WORD pc, mc;

register unsigned WORD *e;

register unsigned WORD P, M, U, X, Y;

Scell *S, *SE;

const int BUF_SIZE = (sourceLen >= BUF_MAX) ? BUF_MAX : sourceLen;

char *buf = (char*)malloc(BUF_SIZE);

S = (Scell *) malloc(sizeof(Scell)*seg);

SE = S + (seg-1);

diw = dif + W;

sd = S + (dif-1)/W;

for (s = S; s <= sd; s++)

{
s->P = All;

s->M = 0;

s->V = ((s-S)+1)*W;

}

//Open the source file

FILE *ifile;

ifile = fopen(filepath, ”r”);

if(ifile == NULL)

{
printf(”Error: unable to open source file for reading.\n”);

return;

}

//Move to starting index within source file

fseek(ifile, sourceStartIndex, SEEK_SET);

base = 1 - rem;

long totalBytesRead = 0;

long bytesLeft = 0;

long mainLoopCounter = 0;

77

while(1)

{
//reset the read buffer to zero before reading

memset(buf, 0, BUF_SIZE);

bytesLeft = (sourceLen + leftBoundPadSize)- totalBytesRead;

if(bytesLeft <= 0)

break;

if(bytesLeft > BUF_MAX)

{
num = fread(buf, 1, BUF_MAX, ifile);

}
else

{
num = fread(buf, 1, bytesLeft, ifile);

}

if(totalBytesRead != 0)

{
base += num;

}

totalBytesRead += num;

if(num == 0)

break;

i = 0;

if (sd == S)

{
P = S->P;

M = S->M;

Cscore = S->V;

for (; i < num; i++)

{
a = buf[i];

U = Pc[a];

X = (((U & P) + P) ˆ P) | U;

U |= M;

Y = P;

P = M | (X | Y);

M = Y & X;

if (P & Ebit)

{
Cscore += 1;

}
else if (M & Ebit)

78

{
Cscore -= 1;

}

Y = P << 1;

P = (M << 1) | (U | Y);

M = Y & U;

if (Cscore <= dif)

{
break;

}
}

S->P = P;

S->M = M;

S->V = Cscore;

if (i >= num)

{
mainLoopCounter += 1;

continue;

}

if (sd == SE)

{
#ifdef SHOW_LOCATIONS

if(mainLoopCounter == 0)

{
printf(” Match type 1 at %d\n”,

(base+i) + (sourceLen * nodeId) + num - leftBoundPadSize);

}
else

{
printf(” Match type 1 at %d\n”,

(base+i) + (sourceLen * nodeId) - leftBoundPadSize);

}
#endif

}

i += 1;

}

for (; i < num; i++)

{
e = TRAN[buf[i]];

pc = mc = 0;

s = S;

79

while (s <= sd)

{
U = *e++;

P = s->P;

M = s->M;

Y = U | mc;

X = (((Y & P) + P) ˆ P) | Y;

U |= M;

Y = P;

P = M | (X | Y);

M = Y & X;

Y = (P << 1) | pc;

s->P = (M << 1) | mc | (U | Y);

s->M = Y & U;

U = s->V;

pc = mc = 0;

if (P & Ebit)

{
pc = 1; s->V = U+1;

}
else if (M & Ebit)

{
mc = 1; s->V = U-1;

}

s += 1;

}
if (U == dif && (*e & 0x1 | mc) && s <= SE)

{
s->P = All;

s->M = 0;

if (pc == 1)

{
s->M = 0x1;

}
if (mc != 1)

{
s->P <<= 1;

}

s->V = U = diw-1;

sd = s;

}

80

else

{
U = sd->V;

while (U > diw)

{
U = (–sd)->V;

}
}

if (sd == SE && U <= dif)

{
#ifdef SHOW_LOCATIONS

if(mainLoopCounter == 0)

{
printf(” Match type 2 at %d\n”,

(base+i) + (sourceLen * nodeId) + num - leftBoundPadSize);

}
else

{
printf(” Match type 2 at %d\n”,

(base+i) + (sourceLen * nodeId) - leftBoundPadSize);

}
#endif

}
}

while (sd > S)

{
i = sd->V;

P = sd->P;

M = sd->M;

Y = Ebit;

for (X = 0; X < W; X++)

{
if (P & Y)

{
i -= 1;

if (i <= dif)

{
break;

}
}

else if (M & Y)

{
i += 1;

}

81

Y >>= 1;

}

if (i <= dif)

{
break;

}

sd -= 1;

}

mainLoopCounter += 1;

}//end main while loop

if (sd == SE)

{
P = sd->P;

M = sd->M;

U = sd->V;

for (i = 0; i < rem; i++)

{
if (P & Ebit)

{
U -= 1;

}
else if (M & Ebit)

{
U += 1;

}

P <<= 1;

M <<= 1;

if (U <= dif)

{
#ifdef SHOW_LOCATIONS

if(mainLoopCounter <= 1)

{
printf(” Match type 3 at %d\n”,

(base+i) + (sourceLen * nodeId) + num - leftBoundPadSize);

}
else

{
printf(” Match type 3 at %d\n”,

(base+i) + (sourceLen * nodeId - leftBoundPadSize));

}
#endif

}
}

82

}

free(buf);

}

//————————————————————–

//The following functions are used to parse the input pattern

//that will be used for the search

//

int scan1(pat)

register char *pat;

{
register int vlen;

patlen = vlen = 0;

while (*pat != ’\0’)

{
pat += 1;

patlen += 1;

vlen += 1;

}

return (vlen);

}

void scan2(pat,vlen) register char *pat; int vlen;

{
register int c, comp;

register char *vpt;

vpt = (char *) malloc(vlen);

patvec = (element *) malloc(sizeof(element)*patlen);

patlen = 0;

while(*pat != ’\0’)

{
patvec[patlen].type = CHAR;

patvec[patlen].value = vpt;

*vpt++ = *pat++;

patlen += 1;

}
}

void encode_pattern(pat) char *pat;

{
int vlen;

vlen = scan1(pat);

scan2(pat,vlen);

}

83

//—————————————————————-

//main()

//This is the entry point for the program and initiates the search

//algorithm. The multiprocessor parallelization is achieved by

//segmenting the search data by dividing it by the number of processors

//involved in the operation. Each processor then individually performs

//a search with its subset of the search data and reports its findings

//individually.

//

int main(argc,argv) int argc; char *argv[];

{
//MPI variables

int nodeId;

int nodeCount;

//MPI Initialization

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &nodeId);

MPI_Comm_size(MPI_COMM_WORLD, &nodeCount);

//Local variables

long dif = 0;

char *pat = NULL;

char *filepath = NULL;

FILE *ifile = NULL;

long fileSize = 0;

long dataSubsetSize = 0;

long targetStringSize = 0;

struct timeval startTime, endTime;

double timeElapsedInSeconds = 0.0;

int procIndex = 0;

//Check input arguments

if(argc != 4)

{
if(nodeId == CONTROL_PROCESS)

{
printf(”Invalid parameter set. Unable to start search.\n”);

printf(”Usage: %s [pat] [dif] [file]\n”, argv[0]);

}

goto FINALIZE;

}

pat = argv[1];

dif = atoi(argv[2]);

filepath = argv[3];

84

targetStringSize = strlen(pat);

//Attempt to open the source file that will be used to search

ifile = fopen(filepath, ”r”);

if (ifile == NULL)

{
if(nodeId == CONTROL_PROCESS)

printf(”Can’t open file %s. Unable to start search.\n”, filepath);

goto FINALIZE;

}

//get the size of the file

fseek(ifile, 0L, SEEK_END);

fileSize = ftell(ifile);

fclose(ifile);

//calculate the data subset size that will be used for each processor

dataSubsetSize = fileSize / nodeCount;

if(dataSubsetSize <= 0)

{
if(nodeId == CONTROL_PROCESS)

printf(”Insuficient data for all processor nodes. \

Unable to start search.\n”);

goto FINALIZE;

}

//check that the max differences allowed for matches

//is <= than the length of the pattern

if(dif > targetStringSize)

{
if(nodeId == CONTROL_PROCESS)

printf(”Invalid parameter for allowed mismatches, \

cannot be larger than pattern size. Unable to start search.\n”);

goto FINALIZE;

}

//search is ready to start, print out relevant parameters

if(nodeId == CONTROL_PROCESS)

{
printf(”\n**\n”);

printf(”pat=%s\n”, pat);

printf(”pat length=%i\n”, targetStringSize);

printf(”dif=%i\n”, dif);

printf(”data file=%s\n”, filepath);

printf(”file size bytes=%i\n”, fileSize);

printf(”number of processors=%i\n”, nodeCount);

85

printf(”data subset size=%i\n”, dataSubsetSize);

printf(”**\n\n”);

}

//Start the timing measurement

gettimeofday(&startTime, NULL);

//Encode the pattern that will be used in the search

encode_pattern(pat);

//setup the search

setup_search();

//Launch the search segments in each processor

for(procIndex=CONTROL_PROCESS; procIndex < nodeCount; procIndex++)

{
//Only do this for the current process instance

if(nodeId == procIndex)

{
//get the starting index for the subset of this node.

//Note that the leftmost subset needs no patching

//all other nodes get an extra (targetSize -1) of search area at the left.

long leftBoundPadSize = (nodeId > CONTROL_PROCESS) ? targetStringSize - 1 : 0;

long dataStartIndex = (dataSubsetSize * nodeId) - leftBoundPadSize;

//perform the actual search

search(filepath, //path to file containing the search string

dif, //maximum allowable differences for a string match

dataStartIndex, //the starting index for this subset

//within the data file

dataSubsetSize, //the size of the data subset

leftBoundPadSize, //the amount of padding on the

//left of the data subset for this node

nodeId); //the identifier for this node

gettimeofday(&endTime, NULL);//get end time

//compute the time elapsed in seconds

timeElapsedInSeconds = endTime.tv_sec - startTime.tv_sec

+ ((endTime.tv_usec - startTime.tv_usec) / 1.e6);

//output the time taken to process LD for this node

printf(”time in seconds=%.9f\n\n”, timeElapsedInSeconds);

}
}

FINALIZE:

//Cleanup

MPI_Finalize();

86

return 0;

}

87

REFERENCES

[1] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Com-

munications of the ACM, 35:74–82, 1992.

[2] R. A. Baeza-Yates and G. Navarro. A faster algorithm for approximate string

matching. In Lecture Notes in Computer Science, volume 1075, pages 1–23.

Springer-verlag, New York, 1996.

[3] Mathieu Blanchette and Martin Tompa. Discovery of regulatory elements by a

computational method for phylogenetic footprinting. Genome Res, 12(5):739–

748, 2002.

[4] William S. Bradshaw and Richard D. Storey. Biological Science, A Molecular

Approach. BSCS, 1990.

[5] Alan Filipski and Sudhir Kumar. The Evolution of the Genome. Burlington, MA

: Elsevier Academic, 2005.

[6] Richard W. Hamming. Error detecting and error correcting codes. Bell System

Technical Journal, 2(26):147–160, 1950.

[7] Ross C. Hardison. Comparative genomics. PLoS biology, 1(2):58, 2003.

[8] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algo-

rithms. MIT Press, 2004.

[9] Richard Karp and Michael Rabin. Efficient randomized pattern-matching algo-

rithms. IBM Journal of Research and Development, 31:249–260, 1987.

[10] R. D. Knight and L. F. Landweber. Rhyme or reason: Rna-arginine interactions

and the genetic code. Chemistry And Biology, 5(9):215–220, 1998.

[11] G.M. Landau and U. Vishkin. Fast string matching with k differences. Journal

of Computer Systems and Sciences, 1(37):63–78, 1988.

[12] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[13] W. J. Masek and M. S. Paterson. A faster algorithm for computing string edit

distances. Journal of Computer and System Sciences, 20(1):18–31.

[14] Gene Myers. A fast bit-vector algorithm for approximate string matching based

on dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

[15] Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,

(6):132–137, 1985.

[16] James Watson and Francis Crick. Molecular structure of nucleic acids; a structure

for deoxyribose nucleic acid. Nature, 171(4356):737–738, 1953.

[17] Alden Wright. Approximate string matching using within-word parallelism. Soft-

ware - Practice and Experience, 24(4):337–362, 1994.

[18] Sun Wu and Uri Manber. Fast text searching allowing errors. Communications

of the ACM, 35(10):83–91, 1992.

89

[19] Sun Wu, Uri Manber, and Gene Myers. A subquadratic algorithm for approxi-

mate limited expression matching. Algorithmica, 15:50–67, 1996.

[20] Elena Zaslavsky and Mona Singh. A combinatorial optimization approach for

diverse motif finding applications. Algorithms Mol Biol., 1(13), 2006.

90

