
ABSTRACT

Design and Automated Testing of PCI Express Interface of
Proton Computed Tomography Detectors

Yu Yang, M.S.E.C.E.

Mentor: Keith Evan Schubert, Ph.D.

Throughout this thesis, I will propose a transmit-received-engine based logic

design proposed by this thesis works at the PCI Express Transaction Layer in

collaboration with Xilinx 7 Series FPGAs Integrated Block for PCI Express. By

automated testing and results evaluation, the new design can speed up the original

Ethernet link speed by a factor of 30, At the same time, supports the needs of the new

signal peaks in 50 ns. Therefore, two key concerns of the existing Phase-II pCT scanner

hardware upgrade can be satisfied.

Page bearing signatures is kept on file in the Graduate School.

Design and Automated Testing of PCI Express Interface of
Proton Computed Tomography Detectors

by

Yu Yang, B.E., M.E.

A Thesis

Approved by the Department of Engineering and Computer Science

Kwang Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science in Electrical and Computer Engineering

Approved by the Thesis Committee

Keith Evan Schubert, Ph.D., Chairperson

Robert J. Marks II, Ph.D.

Young-Rae Cho, Ph.D.

Accepted by the Graduate School

May 2019

J. Larry Lyon, Ph.D., Dean

Copyright © 2019 by Yu Yang

All rights reserved

iv

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES ... ix
CHAPTER ONE ... 1

Introduction ... 1
Background ... 1
Organization of Thesis .. 3

CHAPTER TWO .. 5
PCI Express Specification Introduction .. 5

PCI Express Link .. 5
PCI Express Architecture ... 6
PCI Express Layering ... 8

CHAPTER Three .. 11
Transaction Layer Specification ... 11

Transaction Types and Address Spaces .. 11
Packet Format Overview .. 13
Packet Definition .. 14

CHAPTER FOUR ... 24
Introduction to Xilinx 7 Series FPGAs Integrated Block for PCI Express 24

Transaction Interface .. 25
Credit-Based Core Buffering/Flow Control ... 32

CHAPTER FIVE .. 33
A Transmit-Receive Engine Based Logic Design .. 33

Tx Engine and FWFT FIFO Choice ... 35
Rx Engine .. 46

CHAPTER SIX ... 49
Automated Test and Performance Evaluation .. 49

Design Testing .. 49
Performance Analysis ... 61

CHAPTER Seven .. 64
Conclusion .. 64

Summary ... 64
Future Directions .. 65

v

BIBLIOGRAPHY ... 67

vi

LIST OF FIGURES

Figure 1.1. The Phase-II pCT scanner in the Northwestern Medicine Chicago Proton

Center .. 2

Figure 2.1. PCI Express Link .. 5

Figure 2.2. Fabric Example ... 7

Figure 2.3. PCI Express Layering ... 8

Figure 2.4. Packet Flow Through Layers .. 9

Figure 3.1. TLP Format .. 13

Figure 3.2. Byte 0 of TLP Header ... 15

Figure 3.3. 64-bit Format Routing .. 18

Figure 3.4. 32-bit Format Routing .. 18

Figure 3.5. 1st /Last DW BEs .. 19

Figure 3.6. Transaction Descriptor ... 20

Figure 3.7. Transaction ID .. 21

Figure 3.8. Attributes Field ... 21

Figure 4.1. Top Level Functional Blocks and Interfaces .. 25

Figure 4.2. Transmit Interface .. 26

Figure 4.3. Receive Interface .. 28

Figure 4.4. A Subset of Configuration Interface ... 30

Figure 4.5. Memory 32 TLP on AXI4 Interface ... 30

Figure 4.6. 3 DW TLP with Payload .. 31

vii

Figure 4.7. 4 DW Header with Payload .. 31

Figure 5.1. Top Level Hierarchy ... 33

Figure 5.2. Tx Engine State Diagram ... 36

Figure 5.3. Destination Throttle .. 37

Figure 5.4 Source Throttle .. 38

Figure 5.5. Mixed Mode Throttle ... 38

Figure 5.6. Standard FIFO Timing ... 39

Figure 5.7. Standard FIFO Timing ... 40

Figure 5.8. An Edge Case of Standard FIFO .. 40

Figure 5.9. FWFT FIFO Timing ... 42

Figure 5.10. FWFT FIFO Timing with Throttle ... 42

Figure 5.11. An Edge Case of FWFT FIFO usage ... 43

Figure 5.12. Tradition FSM Design for Tx Engine .. 44

Figure 5.13. A Counter Based FSM Design with Marco-Defined Parameters 46

Figure 5.14. Rx Engine State Diagram ... 48

Figure 6.1. PCI Express Structure in PC ... 50

Figure 6.2. Test Environment Structure .. 51

Figure 6.3. Root Complex Model Structure .. 52

Figure 6.4. Test Flow .. 53

Figure 6.5. Simulate Log Example ... 55

Figure 6.6. Error Log Example ... 55

viii

Figure 6.7. Type 0 Configuration TLP Write Tx Log .. 55

Figure 6.8. Automated Testing Batch Program Code Example .. 57

Figure 6.9. 128 DW Memory 32 Read Request Error Timing ... 58

Figure 6.10. Device Control/Capabilities Registers Value ... 59

Figure 6.11. Device Control/Capabilities Register Bit Map ... 60

Figure 6.12. 32 DW Memory 32 Read Test Result .. 61

Figure 6.13. Complete Data Communication Cycle .. 62

ix

LIST OF TABLES

Table 3.1. Transaction Types for Different Address Spaces .. 11

Table 3.2. Fmt[2:0] Field Values .. 15

Table 3.3. Fmt[2:0] and Type[4:0] Field Encodings .. 16

Table 3.4. Length[9:0] Field ... 16

Table 3.5. Address Field Bit Map ... 18

Table 3.6. Byte Enables Location and Correspondence ... 20

Table 3.7. Ordering Attributes .. 22

Table 3.8. No Snoop Attribute .. 22

Table 3.9. Definition of TC Field Encodings ... 23

Table 4.1. 7 Series FPGAs Integrated Block for PCI Express overview 24

1

CHAPTER ONE

Introduction

Background

Cancer is a major health threat. At the beginning of 2018, about 1.7 million

people in the U.S. were expected to be diagnosed as new cancer cases and about 609,640

Americans were expected to die of cancer in 2017 [1]. Radiation therapy with protons

and heavier ions is an attractive form of cancer treatment that could enhance local control

and survival of cancers that are currently difficult to cure and lead to less side effects due

to sparing of normal tissues [2]. Planning the energy and spatial distributions of the

proton beam prior to treatment requires detailed knowledge of the “relative proton

stopping power” (RSP) of the tissue in front of and in the tumor. X-ray CT scans are now

used to estimate the RSP, but transforming from X-ray absorption to proton stopping

power is ambiguous and error prone. Proton CT measures directly the RSP, and with

minimal radiation dose (less than or no more than an X-ray CT scan) [3].

Single-particle tracking pCT technology has been put into clinical trials. Many

recent publications reporting on pCT technology [4-10], pCT image quality [11,12], and

mathematical and computer science aspects of pCT [13,14], demonstrating the large

productivity in this field.

The existing Phase-II pCT scanner has been used in beam-test experiments not

only by researchers but also by people not originally involved in its design and

fabrication. Those experiments have generally required participation of an expert to

2

ensure success in setting up and operating the scanner. With some improvement and

upgrade of hardware, we can simplify greatly the setup, calibration, and operation and

make it possible for anybody in the research community to carry out an experiment with

the device. At the same time, the scanner can run faster, cutting in half the time needed to

make a full CT scan and reducing inefficiencies from pileup when using a pencil-beam,

See Figure 1.1 for a photograph of pCT scanner.

Figure 1.1. The Phase-II pCT scanner in the Northwestern Medicine Chicago Proton
Center

The readout data of each energy detector and tracker is transmitted by a Spartan-6

FPGA to a Virtex-6 ‘event-builder’ Field Programmable Gate Array (FPGA) on the data

acquisition board over 100 Mbit/s LVDS link. The ‘event-builder’ FPGA uses Ethernet

for connection with Data Acquisition (DAQ) Computer. There are two key concerns of

hardware upgrade:

3

1. Because the Ethernet link operates at 800 Mbit/s, the readout speed of events

is limited at up to 1.2 MHz. Speed up the speed of link between ‘event-builder’

FPGA and DAQ Computer is a throttle of the performance of the current

scanner.

2. The readout of data from the silicon-strip sensors is accomplished by a fully

custom integrated circuit (ASIC) that was designed specifically for the Phase-

II pCT scanner [15]. The redesign goal is to increase the speed of the

preamplifier and shaping amplifiers by about a factor of four, such that the

signal peaks in about 50 ns instead of 200 ns. This will greatly reduce the

pileup probability, especially when running the system with a pencil beam,

and can be accomplished by increasing the sizes of some of the transistors,

especially the large input transistor, as well as the currents.

The thesis proposes a new interface design between ‘event-builder’ FPGA and

DAQ based on PCI Express 3.0. By automated testing and results evaluation, the new

design can speed up the original Ethernet link speed by a factor of 40, At the same time,

supports the needs of the new signal peaks in 50 ns.

Organization of Thesis

Chapter two gives an overview of the PCI Express architecture. Some

fundamental concepts of PCI Express are discussed, such as Link, Root Complex and

Endpoint.

Chapter three discusses the behavior of the Transaction Layer of PCI Express.

Chapter four gives a brief introduction to Xilinx 7 Series FPGAs Integrated Block

for PCI Express, including its transaction interface and flow control mechanism.

4

Chapter five discusses the design of user logic, including the Tx engine and the

FWFT FIFO choice, and the Rx Engine.

Chapter six discusses the automated test of the design and test result, followed by

the performance evaluation of the design.

Chapter seven makes a conclusion and gives future directions.

5

CHAPTER TWO

PCI Express Specification Introduction

This chapter gives an overview of the PCIE Express architecture and fundamental

information to implement any PCI Express based logic design.

PCI Express Link

A link is a dual-simplex communication channel between two PCI Express

components, such as a Root Complex to an Endpoint.

Figure 2.1. PCI Express Link

The basic PCI Express Link has two Low-Voltage Differential Signaling (LVDS)

pairs: a Transmit Pair and a Receive Pair as shown in Figure 2.1. 8b/10b encoding is used

to embed data clock (8b/10b is used in 5.0 Gigabits/second/lane, which this system uses,

for 8.0 Gigabits/ second/ lane/ direction, 128b/130b encoding is used). Once a link is

initialized, it only operates at one of the following speeds: for the first-generation PCI

Express, only 2.5 Gigabits/second/lane/direction is supported; and for the second-

6

generation PCI Express, it supports an additional 5.0 Gigabits/second/lane/direction raw

bandwidth (which this system uses); the third-generation adds an 8.0

Gigabits/second/lane/direction option.

A Link consists of at least one Lane, which is a set of LVDS pairs. For the

scalation of bandwidth, a Link may use multiple Lanes, denoted by xN, where N is the

Link widths (the third-generation PCI Express supports x1, x2, x4, x8, x12, x16, x32

while Xilinx 7 Series FPGAs Integrated Block for PCI Express supports only a subset of

them). For example, an x8 Link of 5.0 GT/s data rate has an raw bandwidth of 40

Gigabits/second in each direction (which is also the case in this system).

 After powering up, a PCI Express Link is set up following hardware initialization,

when two components of a link negotiate lane widths and link speed. No software is

involved in this process.

PCI Express Architecture

 A PCI Express fabric is a set of Links that interconnect several components. A

fabric example is shown in Figure 2.1, and consists of a Root Complex (RC) with main

memory, PCI/PCI Express Bridge (optional), PCI Express Endpoints and/or Legacy

Endpoints all connected by PCI Express Link.

 Switch is not used in the system, and is thus not discussed here.

7

Figure 2.2. Fabric Example

Root Complex

A Root Complex (RC) connects the CPU/memory to other PCI Express Devices.

A RC generates transactions (see chapter 3 for transaction types) on behalf of CPU, and

processes the completed info when applied. Configuration requests must be supported by

RC as a Requester. When the RC functions as a requester, it can choose to initialize an

I/O Request but the choice is optional.

Endpoints

An endpoint can either be a Requester or Completer (used in this system).

Endpoints types can be either legacy (not used in this system), PCI Express (used in this

system), or Root Complex (used in this system, as a behavioral simulation model).

A Configuration Read Type 0 Transaction (with Type field in header of TLP set

as 0) must be supported by the Endpoints as a Completer. One example of this is when

the system initializes, the RC send configuration packets to get the information on

8

Endpoints, and maps its memory space. I/O Requests are not supported by PCI Express

Endpoint.

PCI Express Layering

 PCI Express has a three-layer structure, as shown in Figure 2.3. The Transaction

Layer, the Data Link Layer, and the Physical Layer process outbound and inbound

transactions coming from adjacent layers and present the results to next layers.

Figure 2.3. PCI Express Layering

Packets are used for communication between layers. Transaction Layer Packets

(TLPs) are formed by the Transaction Layer and sent to the Data Link Layer to start a

communication. As the packets are processed by the next 2 Layers, additional

information is added to the head and tail parts of the packets. The additional information

is used by the other side of the link, and so is removed from the layer which added it. The

whole flow is shown in Figure 2.4.

9

Figure 2.4. Packet Flow Through Layers

Transaction Layer

The top layer is the Transaction Layer. It is responsible for generating outbound

TLPs and processing inbound TLPs. Credit-based flow control is performed at this layer.

In this system, Xilinx 7 Series FPGAs Integrated Block for PCI Express IP gives the

TLPs buffering/flow control information via the IP Core flow control interface. User

design is responsible for the implementation.

The Transaction Layer supports four address spaces: memory, I/O, configuration

(these are three implemented in the system) and Message.

Data Link Layer

The Data Link Layer is responsible for Link management and error

detection/correction, serving between the Transaction Layer and the Physical Layer.

The transmission section of this Layer accepts TLPs generated by the Transaction

Layer, extends them with data correction code and TLP sequence number, then transmits

them to the Physical Layer. The receive section checks the data integrity of inbound

TLPs, then transmits them to the Transaction Layer. When TLP errors happen, it is

10

responsible for generating retransmission request to the Transaction Layer, until the TLP

is correctly processed, or the Link is determined to have failed.

Physical Layer

 The lowest layer is the Physical Layer. It is responsible for input/output buffering,

parallel-to-serial and serial-to-parallel conversion, 8b/10b or 128b/130b

encoding/decoding, and impedance matching. It converts inbound packets from the Data

Link Layer into a serialized format, and transmits it via physical medium (coaxial cords,

fiber channel and so on) at a frequency and width negotiated during the initialization

process.

 The PCI Express architecture has “hooks” for future performance upgrading. The

upgrade, if happens, can only affect the Physical Layer.

 The logic design of this system is based on the 128-Bit Transaction Layer

Interface provided by Xilinx 7 Series FPGAs Integrated Block for PCI Express IP (in the

lowest level, using 7 Series FPGAs GTX/GTH Transceivers). Therefore, the Data Link

Layer and the Physical Layer are not further discussed.

11

CHAPTER THREE

Transaction Layer Specification

As the top level, the Transaction Layer is responsible for:

1. Process of TLP in accordance with format transmit rules.

2. Management of Credit-based buffering/flow control.

3. Support of data poison and data integrity check (optional).

4. Support of the Virtual Transmit Channel (optional).

This chapter discusses the behavior of the Transaction Layer. Not all of the features

of the Transaction Layer are covered; this chapter only focuses on the subset which is

necessary for implementing a logic design working on the Transaction Layer. The

implementation which involves many TLP format rules. For more details of The PCI

Express Transaction Layer, see [16].

Transaction Types and Address Spaces

The two sides of Transaction are Requester and Completer. Four address spaces

and associated Transaction types are defined, as shown in Table 3.1 for different usages.

Table 3.1. Transaction Types for Different Address Spaces.

Address Space Transaction
Types

Basic Usage

Memory Read/Write Transfer data to/from a memory-mapped location
I/O Read/Write Transfer data to/from a I/O-mapped location
Configuration Read/Write Device Function configuration/setup
Message Baseline From event signaling mechanism to general purpose to general

purpose messaging
Note: Table 3.1. is referenced from [16].

12

Memory Transactions

 Memory Transactions are the main components used for data transmission in this

system. It includes:

1. Read Request/ Completion.

2. Write Request.

3. Atomic Operation Request/ Completion.

The first two types are used in this system.

Two address formats are used in Memory Transaction:

1. Short Address Format: 32-bit address.

2. Long Address Format: 64-bit address.

This system uses Short Address Format but Long Address Format is also

supported.

I/O Transactions

 I/O Transactions are used for PCI Express legacy devices. It may be deprecated

by future versions of PCI Express. I/O Transactions include:

1. Read Request/ Completion

2. Write Request/ Completion

3. I/O Transactions only uses use a 32-bit Short Address Format.

The system doesn’t use I/O Transactions.

13

Configuration Transactions

Configuration Transaction is used for the access of configuration registers of a

target component. It is heavily used in software initialization and configuration process;

its supported types include:

1. Read Request/ Completion

2. Write Request/ Completion

In this system, software initialization and configuration are finished by the Root

Complex Simulation Model provided by Xilinx, to configure the Endpoint by operating

its configuration registers.

Packet Format Overview

The Requester and Completer use packets to communicate with each other. The

format of a Transaction Layer Packet (TLP) is shown in Figure 3.1 [16]. A TLP is

divided into 4 parts based on the functionalities: TLP Prefixes (optional), TLP header, a

data payload (when applicable), and an TLP digest(optional).

Figure 3.1. TLP Format

PCI Express Link transmits TLPs (with extended information added by Data Link

Layer and Physical Layer) in a serialized form. At byte level, the leftmost byte is the first

byte transmitted/received. For all the transactions generated by the user logic, Header is

the first part, followed by Data Payload when applied. Note the byte order in PCI Express

14

SPEC differs from the order presented by Xilinx 7 Series FPGAs Integrated Block for

PCI Express (see Chapter Four for more details).

 TLP header consists of a subset of the following fields depending on its type:

1. Format of the packet

2. Type of the packet

3. Data Length

4. Transaction Descriptor (which consists of Transaction ID, Attributes, Traffic

Class)

5. Address/ routing information

6. Byte Enables (1st BE and Last BE)

7. Message encoding

8. Completion status

Packet Definition

 Transactions are performed by Requesters and Completers at the two sides of a

link. The packet is the basic unit used by Transactions. Packet are classified by requests

and completions. The request packet must be used by any Transaction, but completions

are only used when they are applicable. For example, a read request requires returned

data, and a I/O write request requires complete status information.

Packet Header

Packets may or may not have certain fields of the header, based on the transaction

type, and some fields may have different bit lengths for different addressing formats. For

a 32-bit-request TLP header, byte 4 is the requester ID field while for a completion TLP

15

header, it represents the completer ID. Byte 8-11 is address info for a request TLP, but it

represents requester ID, tag and lower address filed for a completion TLP.

A typical TLP is shown in Figure 3.2. Because the logic design of this system

should totally conform with PCI Express SPEC when generating outbound TLPs to

Xilinx 7 Series FPGAs Integrated Block for PCI Express IP and processing inbound

TLPs from it, the following sections discuss important subsets of [16].

Figure 3.2. Byte 0-3 of TLP Header

The valid combination Fmt and Type fields determine the remaining parts of the

TLP header, and whether or not data payload is following the header. All the valid values

are shown in Table 3.2. and Table 3.3.

Table 3.2. Fmt[2:0] Field Values.

Fmt[2:0] Corresponding TLP Format
3’b000 3 DW header, no data
3’b001 4 DW header, no data
3’b010 3 DW header, with data
3’b011 4 DW header, with data
3’b100 TLP Prefix

All encodings not shown above are
Reserved

16

Table 3.3. Fmt[2:0] and Type[4:0] Field Encodings.

TLP Type Fmt[2:0] Type[4:0] Description
MRd 3’b000

3’b001
5’b00000 Memory Read Request

MRdLk 3’b000
3’b001

5’b00001 Memory Read Request-Locked

MWr 3’b010
3’b011

5’b00000 Memory Write Request

IORd 3’b000 5’b00010 I/O Read Request
IOWr 3’b010 5’b00010 I/O Write Request
CfgRd0 3’b000 5’b00100 Configuration Read Type 0
CfgWr0 3’b010 5’b00100 Configuration Write Type 0
CfgRd1 3’b000 5’b00101 Configuration Read Type 1
CfgWr1 3’b010 5’b00101 Configuration Write Type 1
TCfgRd 3’b000 5’b11011 Deprecated TLP Type
TCfgWr 3’b010 5’b11011 Deprecated TLP Type
Msg 3’b001 5’b10r2r1r0 Message Request – The sub-field r[2:0] specifies the

Message routing mechanism.
MsgD 3’b011 5’b10r2r1r0 Message Request with data payload – The sub-field r[2:0]

specifies the Message routing mechanism.
Cpl 3’b000 5’b01010 Completion without Data – Used for I/O and Configuration

Write Completions with any Completion Status. Also used
for Atomic Operation Completions and Read Completions
(I/O, Configuration, or Memory) with Completion Status
other than Successful Completion.

CplD 3’b010 5’b01010 Completion with Data – Used for Memory, I/O and
Configuration Read Completions. Also used for Atomic
Operation Completions.

CplLk 3’b000 5’b01011 Completion for Locked Memory Read without Data = Used
only in error case.

CplDLk 3’b010 5’b01011 Completion for Locked Memory Read – otherwise lick
CplD.

 Length field determines the DW (four bytes) length of the data payload, if

presented. Its valid values are shown in Table 3.4.

 Table 3.4. Length[9:0] Field.

Length[9:0] Corresponding TLP

Data Payload Size
9’b000000000 1024 DW
9’b000000001 1 DW
… …
9’b111111111 1023 DW

17

Note that 9’b000000000 represents maximum 1024 DW allowed by PCI Express

since all the transaction must not cross 4 KB boundary).

A TLP with a data payload must limit the payload size within the minimum value

denoted by Max_Payload_Size of the Device Control Registers of Requester and

Completer of Link. This system supports a Max_Payload_Size of 512 KB in real

application, while the simulation and evaluation only use 128 KB of it because the other

side of the Link, Root Complex simulation model only supports a Max_Payload_Size of

128 KB. TLPs violating this rule are Malformed TLPs and discarded.

Note the size of a Memory Request Size is also limited by

Max_Read_Request_Size of the Device Control Registers of the devices. Also note that

the rule doesn’t count TLP Digest as Payload Length; only data is counted.

Routing of TLP

Address, ID and implicit routing are defined in the Express SPEC. Currently, only

Address Based routing is used in this system because memory r/w is the main transaction

used in this system. The other 2 routing mechanisms are not discussed here.

Address routing is used in Memory and I/O Requests. As shown in Figure 3.3.

and Figure 3.4., it supports 12-byte (3 DW) header with 64-bit address format, and 16-

byte (4 DW) with 32-bit address format.

18

Figure 3.3. 64-bit Format Routing

Figure 3.4. 32-bit Format Routing

Address field bit map is given by Table 3.5.

Table 3.5. Address Field Bit Map

Address Bits 32-bit Addressing 64-bit Addressing
63:56 Not Applicable Bits 7:0 of Byte 8
55.48 Not Applicable Bits 7:0 of Byte 9
47:40 Not Applicable Bits 7:0 of Byte 10
39:32 Not Applicable Bits 7:2 of Byte 11
31:24 Bits 7:0 of Byte 8 Bits 7:0 of Byte 12
23:16 Bits 7:0 of Byte 9 Bits 7:0 of Byte 13
15:8 Bits 7:0 of Byte 10 Bits 7:0 of Byte 14
7:2 Bits 7:2 of Byte 11 Bits 7:2 of Byte 15

Memory Read/Write, and Atomic Operation Requests can use either 32-bit

address format or 64-bit address format. 32-bit format must be used for Addresses

smaller than 4 GB. A use of 64-bit address format for addresses smaller than 4 GB is

19

undefined in PCI Express SPEC. In this system, all the TLPs use 32-bit format because

the mapped address is in Mega Bytes level.

Byte Enables Rules

1st DW BE and Last DW BE are used in all the transaction types except Message.

They are at the seventh byte of the header, as shown in Figure 3.5.

Figure 3.5. 1st /Last DW BEs

1st DW BE and Last DW BE both have 4 bits, with each bit indicating the byte

enable for corresponding byte location in 1st/Last DW of the TLP payload.

If a request TLP has a Length field larger than 1 DW, which is 4 bytes, then 1st

DW BE should not be 0000b and Last DW BE should not be 000b. If a request TLP has a

Length field of 1 DW, Last DW BE can only be 0000b.

For all 2 DW Memory Type Requests that are not QW aligned, and Memory Type

Requests that are larger or equal to 3 DW, the 1st DW BE and Last DW BE fields must

be set to a contiguous format, for example:

2 DW Length Field, 1st DW BE 1000b, Last DW BE 0111b.

Table 3.6. shows the bit map for 1st /Last Byte Enable fields,

20

Table 3.6. Byte Enables Location and Correspondence

Byte Enables Header Location Affected Data Byte
1st DW BE[0] Bits 0 of Byte 7 Byte 0
1st DW BE[1] Bits 1 of Byte 7 Byte 1
1st DW BE[2] Bits 2 of Byte 7 Byte 2
1st DW BE[3] Bits 3 of Byte 7 Byte 3
Last DW BE[0] Bits 4 of Byte 7 Byte N-4
Last DW BE[1] Bits 5 of Byte 7 Byte N-3
Last DW BE[2] Bits 6 of Byte 7 Byte N-2
Last DW BE[3] Bits 7 of Byte 7 Byte N-1
Note: Referenced from [16]

Note 1 DW Read Request with 1st DW BE set to 0000b is permitted. In this case,

the Completion-with-Data TLP must include 1 DW data payload with any value.

Transaction Descriptor

The Transaction Descriptor enables the Identification between different Devices

and is the fundamental functionality for PCI Express Packets Ordering. As shown in

Figure 3.6., it consists of Transaction ID, Attributes and Traffic Class (TC). Note these

fields are not in a contiguous position within the packet header.

Figure 3.6. Transaction Descriptor

Transaction ID. As shown in Figure 3.7., Transaction ID has two parts:

Requester ID and Tag as shown in Figure 3.7. The requester ID is a 16-bit unique value

for every device in a PCI Express Fabric. The tag is generated and maintained

21

independently by every device, and it is unique for every outstanding TLP generated by

that device. With the Transaction ID, any request TLP in a PCI Express Fabric can be

identified.

Figure 3.7. Transaction ID

Attributes. The Attributes field is a 3-bit field used for TLP Ordering and

Hardware coherency management (snoop), as shown in Figure 3.8.

Figure 3.8. Attributes Field

Table 3.7. defines the states of the Relaxed Ordering and ID-Based Ordering

attribute fields. The system uses the PCI Strongly Ordered Model because it has only one

Root Complex (Requester) and one Endpoint (Completer). So all the TLPs transmitted in

this system has the field Attr[2:1] as 2’b00.

22

Table 3.7. Ordering Attributes

Attr[2] Attr[1] Cache Coherency

Management Type
Coherency Model

0 0 Default Ordering PCI Strongly Ordered Model
0 1 Relaxed Ordering PCI-X Relaxed Ordering Model
1 0 ID-Based Ordering Independent ordering based on

Requester/Completer ID
1 1 Relaxed Ordering plus

ID-Based Ordering
Logical “OR” Relaxed Ordering and ID-Based
Ordering

Note: Referenced from [16]

No Snoop Attribute. The Table 3.8. shows the definition of the No Snoop

attribute.

Table 3.8. No Snoop Attribute

No Snoop Attribute Cache Coherency

Management Type
Coherency Model

0 Default Hardware enforced cache
coherency expected

1 No Snoop Hardware enforced cache
coherency not expected

Note: Referenced from [16]

For all the Transaction Types used in this system, the hardware enforced cache

coherency model is used.

Traffic Class (TC). TC is a 3-bit field used for supporting the PCI Express Virtual

Channel. It is the fundamental functionality for the PCI Express Bus Arbitration Process.

In this system, all the TLPs have TC field set as 3’b000. Table 3.9. defines the TC

encodings.

23

Table 3.9. Definition of TC Field Encodings

TC Field Value Definition
000 TC0: Best Effort service class (General

Purpose I/O), Default TC – must be supported
by every PCI Express device

001 - 111 TC1 -TC7: Differentiated service classes
(Differentiation based on Weighted-Round-
Robin and/or Priority)

Note: Referenced from [16]

24

CHAPTER FOUR

Introduction to Xilinx 7 Series FPGAs Integrated Block for PCI Express

 In this system, the user design works with Xilinx 7 Series FPGAs Integrated

Block for PCI Express to provide Endpoint function. Therefore, before implementing any

features in and above the Transaction Layer, the fundamental information about Endpoint

IP must be discussed, including the Transaction Layer AXI4-Steam Interface and Core

Buffering/Flow Control mechanism. For more details about Xilinx 7 Series FPGAs

Integrated Block for PCI Express, please check Xilinx 7 Series FPGAs Integrated Block

for PCI Express LogiCORE IP Product Guide [17].

Endpoints support 2.5 Gb/s and 5.0 Gb/s lane speeds, with different AXI4 data

bus width and lane widths, as shown in Table 4.1.

Table 4.1. 7 Series FPGAs Integrated Block for PCI Express overview

Name User Interface Supported Lane Widths
1-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1
2-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1, x2
4-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4
8-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4, x8
Note: Referenced from [17]

The Xilinx 7 Series FPGAs Integrated Block for PCI Express core provides full

functionality in Transaction Layer, Data Link and Physical Layer, conforming to the PCI

Express Base Specification.

25

Figure 4.1 shows the structure of the 7 Series FPGAs Integrated Block for PCI

Express IP core. In this system, the IP is configured to x8 Link of 5.0 GT/s, 128-bit wide

AXI4 interface mode.

Figure 4.1. Top Level Functional Blocks and Interfaces [17]

Transaction Interface

For outbound transmission, TLPs are generated by user logic and sent to the

Transaction Interface. For inbound transmission, TLPs are presented by Endpoint IP and

consumed by user logic. Since user logic focuses on the Transmit Interface, Receive

Interface and Configuration Interface, other core interfaces are not discussed.

Figure 4.2., Figure 4.3. and Figure 4.4. show the definition of signals of Transmit

Interface and Receive Interface [17].

26

Figure 4.2. Transmit Interface

27

Figure 4.2. Transmit Interface (Cont’d)

28

Figure 4.3. Receive Interface

29

Figure 4.3. Receive Interface (Cont’d)

30

Figure 4.4. shows a subset of Configuration Interface Signals which are important

for user logic [17].

Figure 4.4. A Subset of Configuration Interface

AXI4 stream data bus has a reverse endianness with PCI Express. Figure 4.5.

represents a typical 32-bit addressable Memory TLP on the AXI4 data bus [17].

Figure 4.5. Memory 32 TLP on AXI4 Interface

Both 3 DW and 4 DW header TLPs are supported by AXI4 interface.

Figure 4.6. shows the typical timing of a 3 DW header TLP with 8 DW payload

sent by user logic. User logic asserts the tx_valid signal, and at the same time presents the

3 DW header with 1 DW payload on AXI4 data bus. tkeep[15:0] is set to ffffh to notify

the Endpoint IP that all 4 DW at this cycle contain valid data. At the last cycle, sser logic

asserts tx_last signal to notify Endpoint IP that last frame of data is presented, with

tkeep[15:0] set to 0fffh, notifying the Endpoint IP that only lower 3 DW is valid payload.

31

 Figure 4.7. represents a 4 DW Memory 64 TLP with n DW data payload, note

that tkeep[15:0] is set to ffffh except in the last cycle, only the lower 2 DW is valid

payload.

Receive Interface has a similar timing with the only difference being that

Endpoint IP is the master side.

Figure 4.6. 3 DW TLP with Payload

Figure 4.7. 4 DW Header with Payload

32

Credit-Based Core Buffering/Flow Control

In the initialization process, Root Complex configures the Device Control

Register of Endpoint, which includes a MAX_PAYLOAD_SIZE field. The maximum

size of TLP payload is limited by the smaller MAX_PAYLOAD_SIZE of both the RC

and the Endpoint.

PCI Express uses a Credit-Based Flow Control mechanism. Requester and

Completer have their own buffering space. For every outstanding request or completion

TLP, one credit is consumed which indicates that one buffering space is used. When the

RC is receiving the corresponding Completion TLP or Link partner successfully receives

a TLP, and one credit is restored.

In this design, the Xilinx 7 Series FPGAs Integrated Block for PCI Express core

have 32 credit/buffering space, represented by tx_buf_av signal on transmit interface,

with each storing a TLP with MAX_PAYLOAD_SIZE. A TLP is backed up in a

buffering space until it is successfully received by other side of the link.

Any buffering space can hold only one TLP at any time, no matter the size of the

TLP. An abnormal flow control behavior of the RC is discussed in Chapter Six. More

details can be found in [17].

33

CHAPTER FIVE

A Transmit-Receive Engine Based Logic Design

This chapter discusses a Transmit-Receive Engine Based Logic Design. The

design hierarchy is shown in Figure 5.1. The design is based on the PIO design provided

by XILINX, with modification and custom features which are proved to be able to satisfy

two key concerns of the Phase-II pCT scanner hardware upgrade:

1. It increases the link speed from 800 Mbit/s to 26.491 Gbit/s, by about 33 times.

2. The logic is able to handle signal peaks in 50-ns level rather than 200-ns level

in the existing Phase-II pCT scanner.

Figure 5.1. Top Level Hierarchy

34

 This design uses BRAM as memory mapped address space for the Endpoint, also

it uses a first-word-fall-through FIFO to buffer the System Data Stream. Memory Read

32 TLP and Memory Write 32 TLP are the main transactions. Memory Read 64, Memory

Write 64 and I/O Read/Write are also supported.

 When an inbound TLP is received, the design checks the TLPs that target

destination and TLP header info. If the TLP hits the BAR space and the TLP header info

conforms to the rules discussed in Chapter Two, then the Rx Engine processes the TLP.

If not, the Rx Engine informs the TX Engine that a TLP is invalid, and the TX Engine

provides the error info to PCI Express IP Core.

 For a valid TLP, if it is a Memory Write 32 TLP, the Rx Engine extracts the

header info, processes it, and writes the data offset to the corresponding address of the

mapped memory. No completion TLP is given back in this case.

 For a Memory Read 32 TLP, the Rx Engine extracts header info such as address,

Transaction Descriptor, Request Length, Byte Enables and passes them to the Tx Engine.

Based on the header info, the Tx Engine generates correct completion with data TLP, and

reads data either from mapped memory or FWFT FIFO. After the Tx Engine successfully

sends the completion with data TLP to the IP Core, it also generates a request complete

signal for the Rx engine.

 Based on the flow control signal given by the IP Core, the Tx Engine may throttle

the data stream by de-asserting axi_data_valid signal and stop reading data from FIFO. If

the credits and buffer space of the Endpoint is not enough, Rx and Tx engine will

suspend all the ongoing transmission, and wait for new credit and buffer space to become

available.

35

Since I/O Read/Write is not the main transaction types used in the system, the

processing of them will not be further discussed here. But note that for an inbound I/O

Write TLP, the Tx Engine also generates a completion without data TLP, according to the

transaction rules of PCI Express SPEC.

Memory 64 TLPs are handled in a similar way with Memory 32 TLPs but with

different TLP format structure. Because the system doesn’t require a mapped endpoint

larger than 4 GB, Memory 64 TLPs are not used.

Tx Engine and FWFT FIFO Choice

The state diagram of Tx Engine is shown in Figure 5.2. After detecting a request

from Rx Engine, it first check if all the rules of the transaction (see Chapter Two or PCI

Express SPEC for more details) are satisfied. If any error is detected, it reports the error

to Xilinx 7 Series FPGAs Integrated Block for PCI Express. Either an error drop in the

buffer pool of IP core or a retransmit happens in this case.

Because the system uses Memory 32 TLP as the main transaction type, only

Memory 32 TLPs related states are discussed here. If the TLP is a Memory 32 read, the

Tx Engine generates a 3 DW TLP header and tries to present it on 2 available cycles of

the IP core. If the destination throttle happens (for example IP de-asserts axi_ready

signal), then the Tx engine waits for its available cycle.

After successfully sending the header, the Tx engine fetches data from BRAM

(for normal destination address)/ FIFO (for specific address mapped to transmitting

Phase-II pCT scanner detector’s stream data) at a speed of 128 bit/cycle, and sends the

fetched data to the IP’s Transaction Layer interface. The same process is performed when

a destination throttle happens. When the Tx engine is sending the last 4 DW data (128

36

bits), it also asserts axi_last signal to notify the IP that all the data payload is sent. Note

that depending on the destination address and requested length, the Tx engine also needs

to operate on axi_keep[15:0] signal and set the corresponding Byte Enables fields in the

header.

Figure 5.2. Tx Engine State Diagram

37

One of the most important issues is how to handle the throttling on the transaction

layer interface. The system needs to maximize the bandwidth, but which cycle is

available for AXI4 transmission depends on the states of both IP core side and FIFO side.

For example, if the IP decides to start throttling because there is no available space in the

transmit buffer, then even if there is data in the system’s stream data FIFO, the Tx engine

should stop fetching new data and hold the current data until new space is available. If

there is no available data in system’s stream data FIFO, even if IP side is available, the

Tx engine needs to start source throttle by de-asserting axi_valid signal. Figure 5.3. and

Figure 5.4. show the 2 cases of throttles. Note that 2 kinds of throttles are not mutually

exclusive. They can overlap with each other, which could become more complicated, as

the Figure 5.5. shows.

Figure 5.3. Destination Throttle

38

Figure 5.4 Source Throttle

Figure 5.5. Mixed Mode Throttle

To maximize the bandwidth of the system, the logic design should present TLP to

the Transaction Layer Interface as long as there is available space. In other words, the

logic design should satisfy the following: If the IP starts a Throttle, the logic should hold

the current data, axis_valid and axis_tkeep signal, waiting until the next first cycle IP re-

assert axis_ready signal. At this same cycle, user logic keeps the holding data and fetches

the next data frame.

39

Challenges come when a FIFO is used for the inbound system stream. Fetching

data from FIFO is FIFO read operation. A standard FIFO’s timing graph is shown in

Figure 5.6., assumes its depth is 4.

Figure 5.6. Standard FIFO Timing

As shown in Figure 5.6., if a standard FIFO doesn’t receive a read enable (rd_en)

signal at the clock edge, the data output (dout) is undefined. Only when FIFO receives a

rd_en signal, does it present the next data (if FIFO is not empty) at the next cycle. In

other words, there is one clock cycle delay before the logic asserts rd_en and data

becomes available for use.

Taking the source throttle into account, once a new buffer/credit is available in the

IP, the earliest moment of logic asserting rd_en of FIFO can be no earlier than the IP

asserting the axis_tready signal, as shown in Figure 5.7., but the actual available data

comes at the next clock cycle. From the viewpoint of the IP side, at least one clock cycle

of bandwidth is wasted.

 It becomes worse when the IP only re-asserts the axis_tready signal for one

cycle. Because in this case, when the available data coming from the FIFO is presented to

IP at the next cycle, the IP is unable to receive it.

40

Figure 5.7. Standard FIFO Timing

An extreme case is shown in Figure 5.8. If the IP is never available more than 1

clock cycle and only half of bandwidth is available (in the whole 4 cycles, the IP side is

available for 2 cycles) because of some unpredictable Link problems, the actual Link

bandwidth usage is only 25 percent. The actual usage is only 50 percent in this case (50

percent available bandwidth, 50% usage of available bandwidth). In this case, the

system’s bandwidth for a x8 Link of 5.0 GT/s data rate would drop from 32 G bit/s to 8G

bit/s (the original bandwidth is 32 Gb/s not 40 Gb/s, because some of the bandwidth is

consumed by 8b/10b encoding/decoding and clock recovery/synchronization).

Figure 5.8. An Edge Case of Standard FIFO

41

FWFT FIFO and Its Use in The System

If using a standard FIFO, the problem can never be solved. This system uses the

first-word fall-through (FWFT) to solve the problem.

 As its name suggests, the First-Word-Fall-Through (FWFT) FIFO doesn’t need an

read operation to present the first data to data output bus. Whenever data is available,

FWFT FIFO presents it at the data bus (like data just falls through the channel), with the

valid signal asserted indicating that data is available. Note that depending on different

configurations, the data_valid signal may have different delays related to first write

operation.

 Figure 5.9. shows the timing of a FWFT FIFO. After first write operation is

successful, the valid signal is asserted and the first data is presented at the bus. When first

rd_en is detected at the clock edge, FWFT FIFO updates the current first data with the

second. Multiple read operation are performed successfully with the exception of the last

one, which causes an underflow of the FIFO. Both the underflow and de-asserting of the

data_valid signal indicate the error. Note for a FIFO with available depth N, N times of

read operation are needed to get all data out (in Figure 5.9., N is 4). This is the same with

standard FIFO and FWFT FIFO [18].

FWFT FIFO solves the problem mentioned in the previous section; additional

available cycles are wasted. Using destination throttle signal as rd_en signal when FWFT

FIFO is not empty updates the current data with next data rather than initiating a read

operation with delay in standard FIFO’s case. Because the first data is presented on the

bus even before rd_en is asserted, first data will be sent whenever new credit is available.

42

Figure 5.9. FWFT FIFO Timing

 Figure 5.10. shows the usage of FWFT FIFO in the system. When IP starts

destination throttle by de-asserting axi_ready signal, no read operation is performed but

data is presented at the bus. Once the destination throttle stops, first data is sent without

any delay and bandwidth waste. The re-asserting of axi_ready is also used as rd_en to

update the data bus, and subsequent available cycles remain unaffected.

Figure 5.10. FWFT FIFO Timing with Throttle

 For the extreme case in previous section, design with FWFT FIFO makes the

system’s real bandwidth as the same as the available bandwidth. As shown in Figure

5.11., the first data is sent at the first available cycle and FWFT FIFO updates the current

43

data. When next available cycle comes, updated data is sent. Real bandwidth is 50

percent in this case, same as available bandwidth.

Figure 5.11. An Edge Case of FWFT FIFO usage

Tx Engine State Machine

A normal state machine logic design consists of several major parts, including

state encoding, state transition, and output logic. Take the Tx Engine in this system for an

example, a normal design is shown as Figure 5.12. The design shown in Figure 5.12. is a

standard 2 phase FSM logic design. This is quite clear. But this hardcoded design has 2

inevitable disadvantages:

1. Hardcoded state encoding is not suitable for future extension.

2. Every state needs a unique state name parameter.

44

Figure 5.12. Tradition FSM Design for Tx Engine

45

 For example, if we need to extend current FSM design from 3DW header + 8DW

data payload to 3 DW hear + 128 DW data payload, first we need to add 30 unique

parameters for the new states’ names (data bus is 128-bit wide, which is 4DW, the added

120 DW data payload needs 30 new states). Then for each new state, we need to add new

output logic. In fact, for the PCI Express in this system, the demand could change

frequently. From the perspective of software development, tt is unacceptable to re-code

huge sections with similar functions every time the demand changes. In other hands, the

Tx engine switches to fetch data from FWFT FIFO when TLP request matches specific

address and length. When new added states need to drive FIFO reading signal set, which

is in another module, it is error-prone.

 This Tx Engine adopts a simple but efficient counter-based FSM with Macro

defined parameters.

As shown in Figure 5.13., the whole state transition is just counter value updates.

The new design has at least 2 advantages: First, it doesn’t require any hardcoded state

encoding; second, the switch of BRAM and FIFO is controlled by Macro parameter

STREAM_ADDR and STEAM_LENGTH. Any demand change only requires modifying

the header file at compile time (the header file also contains other configurable system

parameters, such as user clock frequency, log on/off switch). FWFT FIFO read signal set

is driven only by combination logic, as shown in line 355-363. Because no register is

used on the FWFT FIFO read side, the FPGA LUT resource can be saved for other

features.

46

Figure 5.13. A Counter Based FSM Design with Marco-Defined Parameters

Rx Engine

Compared with the Tx Engine, the Rx Engine’s function and design are simpler.

The Rx Engine used in the system is based on Xilinx 7 Series FPGAs Integrated Block

for PCI Express’s example design, with modification to support the system steam data

transmission using long length Memory 32 TLPs. This section only briefly discusses the

state diagram and important extended feature of the Rx Engine.

If the transaction layer AXI4 interface indicates there is new TLP presented in the

data bus, and Rx Engine is not busy, it parses the TLP header and checks the Fmt and

Type fields of the header. If it is a Memory 32 write TLP, it parses the destination

address field and converts it to the local BRAM address with an appropriate byte mask

47

set according to the header’s Byte Enable fields and AXI4 bus’s keep signal. Then it

passes the data payload of the TLP, address and mask to BRAM controller interface,

finishing the write process. In the whole process of memory write, the Rx Engine keeps

in a busy state until BRAM write is successful. Memory write transaction doesn’t require

completion TLP according to PCI Express SPEC; once write operation is finished, Rx

Engine is ready to receive next TLP.

If TLP is a Memory 32 read type, it extracts all the header information from

different DWs in AXI4 interface, including Transaction Class , Address Type, Attributes,

Tag, Requester ID, Request Length, Byte Enables, and Poisoned TLP Indicator, passing

them to the internal bus between Tx Engine and Rx Engine, along with a request signal

for handshaking with the Tx engine. It waits for the Tx Engine to complete the read

operation by sending completion-with-data TLP to IP. Once it receives the

request_complete signal form the Tx Engine, it goes back to IDLE state and waits for the

next TLP. The state diagram of Rx Engine is shown in Figure 5.14.

I/O type transaction is not discussed in the section.

48

Figure 5.14. Rx Engine State Diagram

49

CHAPTER SIX

Automated Test and Performance Evaluation

 This chapter discusses the testing of the logic design, including an automated test

batch program, an abnormal behavior of the Root Complex behavioral model, test flow

and result. This chapter gives a performance analysis based on the test result.

Design Testing

Testing Structure

The structure of the typical PC with the PCI Express bus consists of the CPU,

main memory, Root Complex, PCI Express Switch (optional) and PCI Endpoint. This

system serves as a PCI Endpoint, as shown in Figure 2.2.

 Typically, user application uses API functions provided by PCI Express Driver,

negotiating lane widths and link speed with PCI Endpoint in initialization process,

configuring and allocating main memory space to the endpoint, reading its device

information and configuring its register space (including BARs, Configuration/Capability

Structures). Once the software initialization and configuration are completed, the user

application uses API functions to communicate with the Endpoint by sending and

receiving TLPs. Any on-board test requires the cooperation of user application and

Endpoint logic design, with operating system and system driver as intermediate levels, as

shown in Figure 6.1.

50

 Before on-board testing, logic design needs to be tested separately to expose and

separate bugs. In this case, a behavioral model is needed in simulation to serve as the

functionality of the Root Complex.

Figure 6.1. PCI Express Structure in PC

 The PCI Express Root Port Model provided by XILINX is used in testing. The

Root Complex model provide provides API for system initialization, Type0/1

Configuration, Memory 32/64 TLP Transaction, I/O Transaction and Message

Transaction, in the form of Verilog/System Verilog code. Thus, significant time could be

saved by verifying the functionality of TLP Layer user logic, rather than developing the

whole test infrastructure to simulate the behavior of Root Complex and PCI Fabric. In

fact, in modern logic design/verification industry, there is a market segment focusing

exclusively on providing PCI Express Verification IP (PCI Express VIP). The Root

51

Complex Model provided by XILINX is not as powerful as industrial-level VIP, but it is

free and covers the basic usage and testing of this system.

 The test environment structure is shown in Figure 6.2., the testing program and

logging system is separated from Root Complex model. The testing program invokes

APIs provided by the Root Complex model, communicates with the Xilinx 7 Series

FPGAs Integrated Block for PCI Express by PCI Express Fabric (LVDS pairs), user logic

design lies above IP. With correct configuration, user logic is tested under the same

conditions as on-board testing.

Figure 6.2. Test Environment Structure

52

Root Complex Model and Test Flow

The Root Complex model consists of 4 parts: the tx block, the rx block, the

common block and the dsport block. The common block provides shared logic for the tx

block and the rx block. The tx block send out the request based on the user test program,

in the form of TLPs. The rx block receives and checks the inbound TLP from the dsport

block [17]. The dsport is responsible for all the functionality below Transaction Layer.

The hierarchy of Root Complex model is shown in Figure 6.3.

Figure 6.3. Root Complex Model Structure

 Details about the Root Complex model can be found in Xilinx Datasheet. This

section only covers the part which is important for test implementation.

 The testing program is sent to the tx block by invoking APIs. More details about

APIs can be found in Xilinx datasheet. The usage of APIs conforms to [16].

53

The whole test flow is shown in Figure 6.4.

Figure 6.4. Test Flow

Logging and Automated Test

Logging. One of the basic debugging and testing methods is reading the timing

graph. The timing graph contains all the information of logic design on the RTL level.

But the timing graph is not a good fit for integrated design and industrial level automated

testing. For example, in this testing, system initialization and BAR initialization are

finished by APIs. Because the time consumed by those two steps is at millisecond level,

54

it is impractical to include all the information in two steps in the timing graph, for at least

two reasons:

1. Once testing environment is set up, for the whole testing cycle, those two

parts are very likely to remain the same.

2. To present millisecond level information in nanosecond level(main clock of

the system is 250 MHz) , the simulation tool requires a large amount of

memory consummation.

As mentioned in the previous section, the focus of testing is on the Transaction

Layer. It involves a lot of rule checking and packet parsing. Using the timing graph to

check all those functionalities is very time consuming and inefficient. Modern logic

verification introduces the Transaction Layer Modeling to give a high-level abstraction of

the function of any logic design. For this design, an appropriate abstraction focuses on the

request and response transmitted between the RC and the Endpoint. For example, the RC

sends a Memory 32 TLP and the Endpoint responds with a Completion with Data TLP. In

this case, the verification should focus on the information contained in TLPs, such as

request length, data payload, request sent time and response received time, rather than on

the bit level wiggling on the timing graph.

The logging interface of the RC model satisfies this need.

A part of the simulation log is shown in Figure 6.5. At 116469411 ns , the RC

starts test targeting at BAR 0 of Endpoint. 2 outbound TLPs are sent and 1 inbound TLP

is successfully received and checked. Part of Payload is also shown.

55

Figure 6.5. Simulate Log Example

By the use of the logging interface, large amounts of time and resources could be

saved from reading a low bit wiggling timing graph. If any error happens, the log helps to

locate the error faster, as shown in Figure 6.6.

Figure 6.6. Error Log Example

If detailed information of TLP is wanted, tx log and rx log provide all the TLPs in

a simulation. Figure 6.7. shows a Type 0 Configuration Write TLP sent at 112469000 ns.

Figure 6.7. Type 0 Configuration TLP Write Tx Log

56

Automated Testing. With logging, only logging files are checked after simulation

for most of the time. Therefore, invocation of the simulation tool with GUI is also not

needed for most of the time, for two reasons:

1. The GUI’s most important function is acting as a utility where users can check

bit level events.

2. The GUI mode requires too much manual operation, such as running/stop

control, wave format configuration/load, zoom in/out.

In this test, automated batch programs are developed for every step, including:

1. compile batch, which compiles source code in an incremental way, compile

warning and error are given in the compile log.

2. simulate batch, which tests the design in non-GUI mode, tx log, rx log and

simulate log are provided after finish

3. view batch, which provides the viewing the simulation in GUI mode, for

debugging

4. simulate with GUI batch, which tests the design in GUI mode, providing a

real time view of wave

5. wave file convert batch, which converts the simulation result file to VCD

format (a more widely supported wave form format).

Parts of the batch program is shown in Figure 6.8.

57

Figure 6.8. Automated Testing Batch Program Code Example

Abnormal Behavior of Root Complex Model and Solution

In order to maximize the bandwidth usage, data payload of the TLPs should be set

to MAX_PAYLOAD_SIZE of Device Capabilities/Control Registers. For x8 Link of 5.0

GT/s PCI Express Fabric used in this design, 512 is the maximum supported value.

The Root Complex uses this maximum value as request length as long as it is

possible. Based on this configuration, the simulation gives the error that requested TLP

hasn’t been received, shown in Figure 6.6. More detailed information is given by timing

graph in Figure 6.9.

58

Figure 6.9. 128 DW Memory 32 Read Request Error Timing

 As shown in Figure 6.9., the user logic provides a TLP with a 128 DW payload to

the Transaction Layer Interface. Even though the transmission is good on the Interface,

the IP core allocates a new buffering space for this TLP, which causes the tx_buf_av

value drop for ‘h1e to ‘h1d. But after the TLP is received by Endpoint IP, tx_buf_av get

reset to ‘h1e, without either the successful transmission to RC side or the assertion of

tx_err_drop signal (which indicates there is PCI Express rule violation in this TLP

causing the drop). The value of the Device Capabilities Register of both the Endpoint and

the RC is shown in Figure 6.10. Bit mapping of the register is shown in Figure 6.11.

 At the Endpoint IP side, both bit location 14:12 and 7:5 has value 000, which

indicate the supported Max_Read_Request_Size and Max_Payload_Size are both 512

Byte. But at the Root Complex model side, bit location 14:12 has a value of 010, while

7:5 has a value of 000, which means the RC side only supports up to 128 Bytes payload

in a TLP.

59

Figure 6.10. Device Control/Capabilities Registers Value

60

Figure 6.11. Device Control/Capabilities Register Bit Map

The reason that the Endpoint IP discards the successfully-received TLP in core

buffering space is that the Root Complex model, on the other side of the link, doesn’t

support a payload of 512 Bytes. The Endpoint IP clears the buffering space and restores

the credit after discarding the TLP.

After modifying the read request length to 128 Bytes, transmission is completed

successfully, as shown in Figure 6.12. Note that the Endpoint IP restores the credit after

the RC receives the TLP.

61

Figure 6.12. 32 DW Memory 32 Read Test Result

Performance Analysis

Because the Root Complex model provided by Xilinx doesn’t provide any

mechanism to configure its Device Control/Capabilities Register, performance analysis is

based on the test results of 32 DW Memory TLPs, and is extended to 128 DW case.

A complete data communication consists of 4 parts, as shown in Figure 6.13:

1. Transmission time from RC sending out Read Request to Endpoint receiving

it, notated by t1.

2. Time for Rx Engine processing inbound TLP, notated by t2.

3. Time for Tx Engine fabricating outbound Completion with Data TLP, notated

by t3.

4. Transmission time from Endpoint sending out TLP to RC receiving it, notated

by t4.

62

Figure 6.13. Complete Data Communication Cycle

 t1 and t4 are fixed values for a PCI Express Link. For the Rx engine, request

processing time t2 for any 3DW header Memory 32 Read TLP is also a fixed value, if

there is available core buffering space. Assuming there is always available data in system

stream FWFT FIFO, t3 is the sum of 3DW header processing time, notated by t3h,and

processing time for every 4 DW data, notated by t3d. The real Bandwidth of the system,

notated by breal, can be calculated by:

 𝑏௥௘௔௟ =
௣_௦௜௭௘ ∗ ௡

௧భା(௧మା௧య೓ା௧య೏∗ே)∗௡ା௧ర
, N is the number of 4DW in payload, n is the

maximum read TLP number of the credit/core buffering space, which is 32 in this design

 According to the timing graph, 𝑡ଵ = 227 𝑛𝑠 , 𝑡ଶ = 12𝑛𝑠 , 𝑡ଷ௛ = 𝑡ଷௗ =

4 𝑛𝑠 , 𝑡ସ = 256 𝑛𝑠. Note that in the real application, software is able to configure

MAX_PAYLOAD_SIZE and MAX_READ_REQUEST_SIZE of Root Complex

Control/Capabilities Register to 128, in this case N is 32.

 𝑏௥௘௔௟ =
ଵଶ଼ ஽ௐ ∗ ଷଶ

ଶଶ଻ ௡௦ା(ଵଶ ାସା ସ∗ଷଶ) ௡௦ ∗ଷଶାଶହ଺ ௡௦
= 24.093 𝐺𝑏𝑖𝑡/𝑠

 24.093 Gb/s is the real bandwidth in case of a 32 consecutive 128 DW TLPs burst

transmission. Note that when the Tx engine sends out the first Completion with Data TLP,

63

it continues to process the following 31 TLPs, notated by t3following. t3following overlaps with

t4 and 𝑡ଷ௙௢௟௟௢௪௜௡௚ > 𝑡ସ, which means RC receives the first Completion with Data TLP

when Tx Engine is still processing the following read request. In this case, the RC

doesn’t need to receive the last expected TLP before making a new read request, because

new credit is available after receiving first TLP. Therefore,

 𝑏௥௘௔௟ = lim
௡→ஶ

ቀ
ଵଶ଼ ஽ௐ ∗ ௡

ଶଶ଻ ௡௦ (ଵଶ ାସା ସ∗ଷଶ) ௡௦ ∗ ௡ାଶହ଺ ௡௦
ቁ = 26.491 𝐺𝑏𝑖𝑡/𝑠

64

CHAPTER SEVEN

Conclusion

Summary

The logic design proposed by this thesis satisfies two key concerns of the Phase-II

pCT scanner hardware upgrade.

First, the speed limit of the Ethernet link between ‘event-builder’ FPGA and DAQ

Computer. It increases the link speed from 800 Mbit/s to 26.491 Gbit/s, by about 33 times.

Second, the redesign goal of increasing the speed of the preamplifier and shaping

amplifiers by about a factor of four, such that the signal peaks in about 50 ns instead of

200 ns. The logic is able to handle signal peaks in 50-ns level because it is operated at a

clock cycle of 4 ns (250 MHz). The link delay between the logic and root complex is 256

ns (discussed in chapter six) and it has 32 TLPs’ credit. The amortized delay is 8 ns. This

exceeds the required factor of four. It greatly reduces the pileup probability, especially

when running the system with a pencil beam, and can be accomplished by increasing the

sizes of some of the transistors, especially the large input transistor, as well as the

currents.

In conclusion, the transmit-received-engine based logic design proposed by this

thesis works at the PCI Express Transaction Layer in collaboration with Xilinx 7 Series

FPGAs Integrated Block for PCI Express. By automated testing and results evaluation,

the new design can speed up the original Ethernet link speed by a factor of 33, At the

same time, supports the needs of the new signal peaks in 50 ns.

65

Future Directions

This thesis has explored the Design and Automated Testing of the PCI Express

Interface for Proton Computed Tomography Detectors. Future work includes the

followings.

First, adding buffer management module in RX Engine. Rx Engine in Current

design starts destination throttle when Tx engine is processing the Memory Read Request.

A buffer management module will give the Rx Engine the ability to keep receiving

inbound TLPs simultaneously with Tx engine’ processing. A better real bandwidth could

be achieved in this way. Strongly Ordering is used in this design, which matches the

sequential work flow of Rx Engine. If Relaxed Ordering or ID-Based Ordering is

required in the future, buffer management module must be added to Rx Engine, because

TLP s are not parsed by the order in which they arrive in those cases. The buffer

management module in the current RX Engine and switch from Strongly Ordering to ID-

Based Ordering could satisfy the future needs of the bandwidth improvement.

Second, root Complex Model provided by Xilinx has 2 problems: it only supports

up to 128 Bytes MAX_PAYLOAD_SIZE; and multithreads Request Sending is not

supported. To perform functional coverage analysis with UVM, those 2 problems must be

solved. The scanner is used in medical treatments, which puts a high demand in reliability.

The use of UVM and full functional/code coverage could prove its reliability in a more

quantitative way.

Third, current design is the best fit for stream transmission of large chunks of data,

which is generated by the Proton Computed Tomography Detectors. For non-consecutive

transmission of small sized data, PCI Express Message Transaction is a better choice,

66

because messages use in-band communications and an independent Transaction Interface

of Xilinx 7 Series FPGAs Integrated Block for PCI Express core [17]. The future needs

of non-delay-sensitive small sized data communication between Data Acquisition (DAQ)

Computer and event-builder FPGA, which could be reporting DAQ’s status to the FPGA,

can be handled by adding message type TLPs support to the design, without sacrificing

the link performance of Proton Computed Tomography Detectors.

67

BIBLIOGRAPHY

[1] American Cancer Society, “Cancer Facts & Figures 2018,” Atlanta: American Cancer
Society, 2018.

[2] Vladimir A. Bashkirov, Robert P. Johnson b, Hartmut F.-W. Sadrozinski, Reinhard W.

Schulte, “Development of proton computed tomography detectors for applications

in hadron therapy,” Nuclear Instruments and Methods in Physics Research, vol.
809, pp. 120–129, 2016.

[3] R.P. Johnson, A Fast Experimental Scanner for Proton CT: Technical Performance

and First Experience with Phantom Scans, IEEE Trans. Nucl. Nl. Sci. 63-1, 2015.

[4] Plautz TE, Bashkirov V, Giacometti V, Hurley RF, Johnson RP, Piersimoni P,

Sadrozinski HF, Schulte RW, Zatserklyaniy A, An evaluation of spatial resolution
of a prototype proton CT scanner, Med Phys, Dec, pp. 43-55, 2016.

[5] Sadrozinski HF, Geoghegan T, Harvey E, Johnson RP, Plautz TE, Zatserklyaniy A,

Bashkirov V, Hurley RF, Piersimoni P, Schulte RW, Karbasi P, Schubert KE,
Schultze B, Giacometti V, Operation of the Preclinical Head Scanner for Proton
CT, Nucl Instrum Methods Phys Res A. Sep., pp. 394-399, 2016.

[6] Bashkirov VA, Johnson RP, Sadrozinski HF, Schulte RW, Development of proton

computed tomography detectors for applications in hadron therapy, Nucl Instrum
Methods Phys Res A, Feb., pp. 120-129, 2016.

[7] Bashkirov VA, Schulte RW, Hurley RF, Johnson RP, Sadrozinski HF, Zatserklyaniy

A, Plautz T, Giacometti V,Novel scintillation detector design and performance
for proton radiography and computed tomography, Med Phys, Feb, pp.664-674,
2016.

[8] Hurley RF, Schulte RW, Bashkirov VA, Coutrakon G, Sadrozinski HF, Patyal B, The

Phase I Proton CT Scanner and Test Beam Results at LLUMC, Trans Am Nucl
Soc, pp. 63-66, 2012.

[9] Plautz T, Bashkirov V, Feng V, Hurley F, Johnson RP, Leary C, Macafee S, Plumb A,

Rykalin V, Sadrozinski HF, Schubert K, Schulte R, Schultze B, Steinberg D, Witt
M, Zatserklyaniy A, 200 MeV proton radiography studies with a hand phantom
using a prototype proton CT scanner, IEEE Trans Med Imaging, Apr, pp.33-37,
2014.

68

[10] Sadrozinski HF, Particle Detector Applications in Medicine, Med Phys. Nucl
Instrum Methods Phys Res A, Dec, pp. 21-23, 2013.

[11] Volz L, Piersimoni P, Bashkirov VA, Brons S, Collins-Fekete CA, Johnson RP,

Schulte RW, Seco J, The impact of secondary fragments on the image quality of
helium ion imaging, Phys Med Biol, Oct, pp 63-82, 2018.

[12] B. Schultze, P. Karbasi, V. Giacometti, T. Plautz, K.E. Schubert, R.W. Schulte,

“Reconstructing highly accurate relative stopping powers in proton computed
tomography,” Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC), IEEE, 2015.

[13] Hurley RF, Schulte RW, Bashkirov VA, Wroe AJ, Ghebremedhin A, Sadrozinski

HF, Rykalin V, Coutrakon G, Koss P, Patyal B, Water-equivalent path length
calibration of a prototype proton CT scanner, Med Phys, May, pp. 39-44, 2012.

[14] Giacometti V, Guatelli S, Bazalova-Carter M, Rosenfeld AB, Schulte RW,

Development of a high resolution voxelised head phantom for medical physics
applications, Phys Med, Jan, pp. 182-188, 2017.

[15] Johnson RP, Dewitt J, Holcomb C, Macafee S, Sadrozinski HF, Steinberg D,

Tracker Readout ASIC for Proton Computed Tomography Data Acquisition, IEEE
Trans Nucl Sci. 60-1, 2013.

[16] PCI SIG, PCI Express® Base Specification Revision 3.0, PCI SIG, 2010. [Online].

Available: https://pcisig.com.

[17] XILINX, “7 Series FPGAs Integrated Block for PCI Express,” LogiCORE IP

Product Guide, Dec, 2018.

[18] XILINX, “FIFO Generator,” LogiCORE IP Product Guide, Oct, 2017.

